
Package: IBrokers (via r-universe)
September 12, 2024

Type Package

Title R API to Interactive Brokers Trader Workstation

Version 0.10.3

Depends xts, zoo

Description Provides native R access to Interactive Brokers Trader
Workstation API.

License GPL-3

Repository https://joshuaulrich.r-universe.dev

RemoteUrl https://github.com/joshuaulrich/ibrokers

RemoteRef HEAD

RemoteSha b2c2e0ee464e47ce8ae111c24b3af7edcd1bc88e

Contents
IBrokers-package . 2
.placeOrder . 4
.twsIncomingMSG . 5
calculateImpliedVolatility . 5
eWrapper . 6
exerciseOptions . 8
processMsg . 10
reqAccountUpdates . 11
reqContractDetails . 12
reqCurrentTime . 14
reqHistoricalData . 15
reqIds . 17
reqManagedAccts . 18
reqMatchingSymbols . 19
reqMktData . 20
reqMktDataType . 22
reqMktDepth . 23
reqNewsBulletins . 25
reqRealTimeBars . 26

1

2 IBrokers-package

setServerLogLevel . 28
twsCALLBACK . 29
twsConnect . 30
twsConnectionTime . 31
twsContract . 32
twsCurrency . 34
twsEquity . 35
twsFuture . 37
twsOption . 38
twsOrder . 40
twsScannerSubscription . 46

Index 49

IBrokers-package R API to the Interactive Brokers Trader Workstation (TWS).

Description

This software is in no way affiliated, endorsed, or approved by Interactive Brokers or any of its
affiliates. It comes with absolutely no warranty and should not be used in actual trading unless the
user can read and understand the source.

IBrokers is a pure R implementation of the TWS API. At present it is only able pull data from the
Interactive Brokers servers via the TWS. Future additions will include more API access, including
live order handling, and better management across R sessions.

Possible real-time charting via the quantmod package may be incorporated into future releases.

Changes to move to version 0.1-0 have made this API implementation much more robust on all
platforms. Many new error-checking calls have been incorporated, as well as a more reliable event-
loop to capture the data from the TWS.

The underlying socket connections are pure R. This was a design decision to maximize cross-
platform availability, as well as a recognition that historical data requests, or any requests while in
a single threaded R session, must be non-threaded.

Recent additions include reqMktData to handle live market data from one or more symbols, reqMktDepth
to capture market depth for one or more symbols, and reqRealTimeBars to recieve 5 second real
time bars. Each of these functions have been implemented with optional user defined callback
handlers to allow for R code to interact with the API while receiving data from the TWS.

Please report any and all bugs/experiences to the maintainer so they can be corrected or incorporated
into future versions.

Additionally, beta testers are needed to make this a viable alternative for IB-API interaction. Don’t
be shy.

IBrokers-package 3

Details

The current API methods supported are:

twsConnect: Establish TWS connection
twsDisconnect: Close TWS connection
isConnected: Check connection
setServerLogLevel: Set logging level

twsAccountUpdates: Get Account Details
reqIds: Request next available ID
reqCurrentTime: The TWS server time in seconds since the epoch
reqHistoricalData: Fetch historical data
reqMktData: Receive real-time market data
reqMktDepth: Receive real-time order book depth
reqRealTimeBars: Receive 5 second OHLCVWC bar data

Experimental support:
placeOrder: Place a live order to the TWS
cancelOrder: Cancel a pending order on the TWS

Author(s)

Jeffrey A. Ryan

Maintainer: Joshua M. Ulrich <josh.m.ulrich@gmail.com>

References

Interactive Brokers: https://www.interactivebrokers.com

Examples

Not run:
IBrokersRef() # IBrokers Reference Card in PDF viewer

tws <- twsConnect() # make a new connection to the TWS
reqCurrentTime(tws) # check the server's timestamp

contract <- twsEquity('IBKR','SMART','ISLAND') # equity specification

reqHistoricalData(tws,contract) # request historical data
twsDisconnect(tws) # disconnect from the TWS

End(Not run)

https://www.interactivebrokers.com

4 .placeOrder

.placeOrder TWS Orders

Description

Place or cancel an order to the TWS.

Usage

placeOrder(twsconn, Contract, Order)

cancelOrder(twsconn, orderId)

Arguments

twsconn A twsConnection object.

Contract A twsContract object.

Order A twsOrder object.

orderId A valid order id.

Details

As described by the official Interactive Brokers (tm) documentation. Caveat Emptor!!

Value

Called for its side effect of placing or cancelling an order on the TWS. This also returns the orderId
used for placeOrder. An additional side-effect is that a variable .Last.orderId will be created or
updated in the GlobalEnv as well.

Note

Orders via the API are quite complicated, or at least can be. It is strongly advised to only proceed
with trading real money after one understands not only all the R code in this package, but the official
API as well. If you are more comfortable clicking shiny buttons in a GUI, it is probably better that
you keep clicking the buttons and not pretend to program.

Not for the faint of heart. All profits and losses related are yours and yours alone. If you don’t like
it, write it yourself.

Author(s)

Jeffrey A. Ryan

References

Official Place Order API: https://interactivebrokers.github.io/tws-api/classIBApi_1_
1EClient.html#aa6ff6f6455c551bef9d66c34d1c8586c

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#aa6ff6f6455c551bef9d66c34d1c8586c
https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#aa6ff6f6455c551bef9d66c34d1c8586c

.twsIncomingMSG 5

See Also

twsContract twsOrder reqIds

Examples

Not run:
tws <- twsConnect()
id <- reqIds(tws)

placeOrder(tws, twsSTK("AAPL"), twsOrder(id))
cancelOrder(tws, id)

End(Not run)

.twsIncomingMSG Internal TWS-API MSG and ERR List

Description

Internal List of MSG Codes and Undocumented (Experimental) Functions

calculateImpliedVolatility

Calculate Option Values

Description

Using the IB API, calculates the implied volatility or option price given parameters.

Usage

calculateImpliedVolatility(twsconn,
Contract,
optionPrice,
underPrice,
reqId = 1)

calculateOptionPrice(twsconn,
Contract,
volatility,
underPrice,
reqId = 1)

6 eWrapper

Arguments

twsconn A twsConnection object

Contract A twsContract object

optionPrice The option price from which to calculate implied

volatility The volatility from which to calculate price

underPrice The underlying price

reqId The request id

Details

Both calls will use the IB described method for calculation. See the official API for documentation.

Value

A numeric value corresponding to the request

Author(s)

Jeffrey A. Ryan

References

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a04c5d248c1036dd72435cc1edc7c58e2
https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a7afa53b655542e74ede683e1de2b2fc4

eWrapper eWrapper Closure For Message Processing

Description

Create an eWrapper closure to allow for custom incoming message management.

Usage

eWrapper(debug = FALSE, errfile=stderr())

eWrapper.data(n)

eWrapper.MktData.CSV(n=1)
eWrapper.RealTimeBars.CSV(n=1)

Arguments

debug should debugging be enabled

errfile where error messages are directed (stderr)

n number of contracts being watched

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a04c5d248c1036dd72435cc1edc7c58e2
https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a7afa53b655542e74ede683e1de2b2fc4

eWrapper 7

Details

IBrokers implements an eWrapper scheme similar to that provided by the official Java API.

The general idea is that each real-time data capture function must manage all incoming signals
correctly, while allowing for the end user to create custom handlers for each specific event.

Internal to the reqRealTimeBars, reqMktData, and reqMktDepth functions is a single call to the
CALLBACK routine passed to it. By default this is twsCALLBACK (see also). A standard argument
to this callback is an eventWrapper — which is an instance of eWrapper.

eWrapper is an R closure that contains a list of functions to manage all incoming message type, as
found in .twsIncomingMSG. Each message has a corresponding function in the eWrapper designed
to handle the particular details of each incoming message type.

There is also an embedded environment in which data can be saved and retrieved via a handful of
accessor functions mimicking the standard R tools.

The data environment is .Data, with accessor methods get.Data, assign.Data, and remove.Data.

These methods can be called from the closure object eWrapper$get.Data, eWrapper$assign.Data,
etc.

The basic eWrapper call simply produces a visually informative display of the incoming stream.
E.g. bidSize data would be represented with a bidSize label, instead of the internal TWS code(s)
returned by the TWS.

By creating an instance of an eWrapper, accomplished by calling it as a function call, one can then
modify any or all the particular methods embedded in the object.

This allows for rapid customization, as well as a built in assurance that all incoming messages will
be handled appropriately without additional programmer time and resources.

An example of this ability to modify the object is given in the eWrapper.MktData.CSV code. This
object produces output deisgned to be space efficient, as well as easily read back into any R session
as a standard CSV file.

Setting debug=NULL will cause empty function objects to be created within the eWrapper object
returned. This object can be treated as a template to implement only the methods that are needed.
By default, all functions silently return the entire message they would normally parse. This includes
empty functions created by setting debug to NULL.

eWrapper.data() allows for data states to be maintained from call to call, as an xts history of
updates/messages is stored within the object. This is designed to minimize calling overhead by
removing unneeded function calls from each message parsed.

Additional, but creating methods that update the internal environment of the eWrapper object, it is
possible to maintain a snapshot of last k values for any field of interest. This is directly applicable
to implementing an automated strategy from within a custom twsCALLBACK method.

Value

A list of functions [and optionally data] to be used for the eventWrapper argument to reqMktData
and reqMktDepth

8 exerciseOptions

Note

It is possible to also attach data to the closure object, allowing for a single in-memory object to
contain current top of book data. This is exemplified in the eWrapper.MktData.CSV code, and can
be extended in the user’s own direction.

Author(s)

Jeffrey A. Ryan

See Also

twsCALLBACK, processMsg

Examples

myWrapper <- eWrapper()

str(myWrapper)

remove tickPrice action
myWrapper$tickPrice <- function(msg, timestamp, file, ...) {}

add new tickPrice action
myWrapper$tickPrice <- function(msg, timestamp, file, ...) { cat("tickPrice",msg) }

add new data into the object, and retrieve
myWrapper$assign.Data("myData", 1010)
myWrapper$get.Data("myData")

Not run:
tws <- twsConnect()
reqMktData(tws, twsSTK("SBUX"))
reqMktData(tws, twsSTK("SBUX"), eventWrapper=myWrapper)
twsDisconnect(tws)

End(Not run)

exerciseOptions Exercise Options Contracts

Description

Send message to exercise option contracts.

exerciseOptions 9

Usage

exerciseOptions(twsconn,
contract,
exerciseAction = 1,
exerciseQuantity = 1,
account = "",
override = 0,
tickerId = 1)

Arguments

twsconn A twsConnection object

contract A twsContract object

exerciseAction exercise=1 or lapse=2

exerciseQuantity

number of contracts to exercise

account IB account [institutional orders]

override override system’s natural action. 0 for do not override, 1 for override

tickerId id for request

Details

Exercise option contract.

Value

Called for its side-effect.

Note

exch=‘SMART’ is not valid in exerciseOptions calls. See the official API for further details.

Author(s)

Jeffrey A. Ryan

References

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#aad70a7b82ad3b5e7ae3e9f0b98dc2a5b

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#aad70a7b82ad3b5e7ae3e9f0b98dc2a5b

10 processMsg

processMsg Main TWS-API Event Manager

Description

Function to manage all incoming messages from the TWS in a consistent manner.

This is used within the context of an event loop (often twsCALLBACK) and allows for custom
processing by message type via the eWrapper argument.

Usage

processMsg(curMsg, con, eWrapper, timestamp, file, twsconn, ...)

Arguments

curMsg The current incoming message

con a socket connection from a twsConnection

eWrapper a functional closure with methods for each message

timestamp the timestamp format needed

file the file or connection to write to

twsconn the twsConnection object

... additional arguments to internal calls

Details

This is used internally within the context of a larger infinite listener/loop.

The basic process involves one or more requests to the TWS for data/action, followed by a call to
twsCALLBACK. Inside of the CALLBACK is a loop that fetches the incoming message type, and
calls processMsg at each new message.

processMsg internally is a series of if-else statements that branch according to a known incoming
message type. The eWrapper object is a closure containing a data environment that is static and a
collection of callback functions for each type of incoming data.

This eWrapper function can be defined at multiple points prior to the use within processMsg, to
allow for access to data outside of the processMsg call, as well as facilitate custom handling in an
efficient manner.

Value

Called for its side-effects.

Note

The entire mechanism (twsCALLBACK -> processMsg -> eWrapper) is modeled after the official
API.

reqAccountUpdates 11

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers: https://www.interactivebrokers.com/

See Also

twsCALLBACK, eWrapper

reqAccountUpdates Request Account Updates

Description

Request and view account details from Interactive Brokers

Usage

reqAccountUpdates(conn,
subscribe = TRUE,
acctCode = "1",
eventWrapper = eWrapper(),
CALLBACK=twsCALLBACK,
...)

.reqAccountUpdates(conn, subscribe = TRUE, acctCode = "1")

twsPortfolioValue(x, zero.pos=TRUE, ...)

Arguments

conn A twsConnection object

subscribe subscribe (TRUE) or unsubscribe (FALSE)

acctCode an account description - not used for most accounts

eventWrapper message-level callback closure

CALLBACK main receiver loop, if any

x object to extract PortfolioValue from. See details.

zero.pos should PortfolioValue include zero positions?

... additional args

https://www.interactivebrokers.com/

12 reqContractDetails

Details

By default, for non-FA accounts, this returns the current login’s account information.

This main version returns a list of objects as returned by the TWS. .reqAccountUpdates sends the
request to subscribe or cancel, but returns immediately. This is designed to be used within a larger
custom callback routine, where the eventWrapper object passed to processMsg (see also) keeps
trace of the portfolio updates in a consistent manner.

twsPortfolioValue extracts into a data.frame commonly used fields from all positions held. There
are currently methods for the the default returned object of reqAccountUpdates.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers API: https://www.interactivebrokers.com

Examples

Not run:
tws <- twsConnect()

reqAccountUpdates(tws) # this will return a AccountUpdate object
.reqAccountUpdates(tws) # this will return immediately

.reqAccountUpdates(tws, FALSE) # cancel the request
cancelAccountUpdates(tws) # the same

twsDisconnect(tes)

End(Not run)

reqContractDetails Request Contract Details From TWS

Description

Returns an object (a list of class twsContractDetails objects) of IB contract details relating to a
particular IB tradeable product.

Usage

reqContractDetails(conn,
Contract,
reqId = "1",
verbose = FALSE,
eventWrapper = eWrapper(),
CALLBACK = twsCALLBACK, ...)

https://www.interactivebrokers.com

reqContractDetails 13

Arguments

conn a valid twsConnection

Contract a valid twsContract

reqId a unique ID

verbose be verbose?

eventWrapper event callback closure

CALLBACK main callback loop

... be verbose?

Details

Returns a list of details for the product specified. See the TWS API for specifics at this point.

Value

A twsContractDetails object, or list of the same.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers https://www.interactivebrokers.com/

See Also

twsContract

Examples

Not run:
tws <- twsConnect()
reqContractDetails(tws, twsEquity("QQQQ"))

retrieve all QQQQ contracts as a list
reqContractDetails(tws, twsOption(local="", right="", symbol="QQQQ"))
retrieve only calls
reqContractDetails(tws, twsOption(local="", right="C", symbol="QQQQ"))
retrieve only puts
reqContractDetails(tws, twsOption(local="", right="P", symbol="QQQQ"))

opt.details <- lapply(c("MSFT","AAPL"),
function(x) {

reqContractDetails(tws,
twsOption(local="", right="",

symbol=x))
})

https://www.interactivebrokers.com/

14 reqCurrentTime

length(opt.details) #number of symbols passed e.g. 2
sapply(opt.details, length) # contracts per symbol

End(Not run)

reqCurrentTime Request The Current TWS Time

Description

Returns the current time from the TWS server, expressed as seconds since 1970-01-01 GMT.

Usage

reqCurrentTime(twsconn)

Arguments

twsconn a valid tws connection object

Value

Seconds since 1970-01-01 GMT

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers https://www.interactivebrokers.com

Examples

Not run:
tws <- twsConnect()
reqCurrentTime(tws)

End(Not run)

https://www.interactivebrokers.com

reqHistoricalData 15

reqHistoricalData Request Historical Data From TWS

Description

Makes a request to the Interactive Brokers Trader Workstation (TWS), and returns an xts object
containing the results of the request if successful.

Usage

reqHistoricalData(conn,
Contract,
endDateTime,
barSize = "1 day",
duration = "1 M",
useRTH = "1",
whatToShow = "TRADES",
timeFormat = "1",
tzone = "",
verbose = TRUE,
tickerId = "1",
eventHistoricalData,
file)

reqHistory(conn, Contract, barSize, ...)

Arguments

conn a twsConnection object

Contract a twsContract

endDateTime end date/time for request. See details.

barSize bar size to retrieve

duration time span the request will cover

useRTH limited to regular trading hours

whatToShow type of data to be extracted

timeFormat POSIX style or seconds from 1970-01-01

tzone time zone of the resulting intraday series (if applicable)

verbose should progress be documented

tickerId a unique id to associte with the request
eventHistoricalData

callback function to process data

file file to write data to

... args to pass to reqHistoricalData

16 reqHistoricalData

Details

The reqHistory function is a simple wrapper to request maximal history from IB. It is meant to be
used directlty, or as a template for new wrappers.

All arguments should be character strings. Attempts will be made to coerce, but should not be relied
upon.

The endDateTime argument must be of the form ’CCYYMMDD HH:MM:SS TZ’. If not specified
the current time as returned from the TWS server will be used. This is the preferred method for
backfilling data. The ‘TZ’ portion of the string is optional.

Legal barSize values are ‘1 secs’,‘5 secs’,‘15 secs’, ‘30 mins’,‘1 min’,‘2 mins’, ‘3 mins’,‘5 mins’,‘15
mins’, ‘30 mins’,‘1 hour’,‘1 day’, ‘1 week’,‘1 month’,‘3 months’, and ‘1 year’.

Partial matching is attempted, but it is best to specify the barSize value exactly as they are given
above. There is no guarantee from the API that all will work for all securities or durations.

The duration string must be of the form ‘n u’ where ‘n’ is an integer and ‘u’ is one of: ‘S’ (seconds),
‘D’ (days), ‘W’ (weeks), ‘M’ (months), or ‘Y’ (year). For example, ‘1 W’ would return one week
of data. At present the limit for years is 1.

useRTH takes either ‘1’ or ‘0’, indicating the request to return only regular trade hour data, or all
data, respectively.

whatToShow can be any one of the following, though depending on the overall request it may not
succeed. ‘TRADES’, ‘MIDPOINT’, ‘BID’, ‘ASK’, ‘BID_ASK’.

time.format should simply be left alone. :D

eventHistoricalData accepts a user function to process the raw data returned by the TWS. This
consists of a character vector that includes the first five elements of header information, with the fifth
element specifying the number of rows in the results set. Passing NULL to eventHistoricalData
will return the raw character vector. If nothing is specified, an xts object is returned.

The eventHistoricalData function, if any, is called after all data has been received by the client.

The file argument calls write.table to produce output suitable to reading in by read.csv. The
file argument is passed to the write.table call, and if an empty string will return the output to the
console.

The hasGaps column is converted automatically from (true,false) to 1 or 0, respectively.

Value

Returns an xts object containing the requested data, along with additional information stored in the
objects xtsAttributes, unless callback or file is specified.

Note

The rules for historical data requests are somewhat vague. Not all symbols have data, and those that
do may only be available with specific combinations of barSize and duration arguments. At present
the only way to know is to try the combination in question.

There is a strictly enforced 10 seconds between request pacing rule implemented by the TWS. Keep
this in mind. IBrokers currently does not manage this for the user via reqHistoricalData, though
reqHistory does.

reqIds 17

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers https://www.interactivebrokers.com

See Also

twsContract, twsConnect

Examples

Not run:
tws <- twsConnect()
contract <- twsEquity('QQQQ','SMART','ISLAND')

by default retreives 30 days of daily data
reqHistoricalData(tws, Contract=contract)

by default retreives a year of 1 minute bars
Sys.sleep(10) # mandatory 10s between request to avoid IB pacing violation
reqHistory(tws, Contract=contract)

End(Not run)

reqIds Request Next Valid Id

Description

Get the next valid order ID for use with the TWS.

Usage

reqIds(conn, numIds = 1)

Arguments

conn a valid twsConnection object of class twsconn.

numIds currently ignored by the TWS.

Details

twsconn objects maintain the next valid id inside of the object, returning the current id, and incre-
menting by 1 with each call to reqIds.

For twsconn objects, reqIds and .reqIds results are identical.

https://www.interactivebrokers.com

18 reqManagedAccts

Value

A character representation of the next numeric ID.

Note

The TWS will keep track of order ids across connection ids and sessions. The values may be reset
only as outlined by the official TWS documentation. IBrokers simply records and manages the data
as recieved from the TWS upon initial connection. Each connection id will have a different order
id associated with it.

Author(s)

Jeffrey A. Ryan

reqManagedAccts Managed Accounts

Description

A single username can handle more than one account. As mentioned in the Connectivity section,
the TWS will automatically send a list of managed accounts once the connection is established. The
list can also be fetched via the IBApi.EClient.reqManagedAccts method. For an individual account,
this call works as well and returns a single account.

Usage

reqManagedAccts(twsconn)

Arguments

twsconn a valid tws connection object

Value

Individual account: a string containing a single account number. For a FamilyAccount it returns a
string with a ’,’ separated list of available accounts.

Author(s)

J.W. de Roode

References

Interactive Brokers https://www.interactivebrokers.com

https://www.interactivebrokers.com

reqMatchingSymbols 19

Examples

Not run:
tws <- twsConnect()
reqManagedAccts(tws)

End(Not run)

reqMatchingSymbols Stock Contract Search

Description

Starting in API v973.02 and TWS v964, a function reqMatchingSymbols is available to search for
stock contracts. The input can be either the first few letters of the ticker symbol, or for longer
strings, a character sequence matching a word in the security name. For instance to search for the
stock symbol ’IBKR’, the input ’I’ or ’IB’ can be used, as well as the word ’Interactive’. Up to 16
matching results are returned.

Usage

reqMatchingSymbols(twsconn, pattern)

Arguments

twsconn a valid tws connection object

pattern either start of ticker symbol or (for larger strings) company name

Value

dataframe: conId, symbol, secType, primaryExchange, currency, derivateSecTypes

Author(s)

J.W. de Roode

References

Interactive Brokers https://www.interactivebrokers.com

Examples

Not run:
tws <- twsConnect()
reqMatchingSymbols(tws, pattern="IB")

End(Not run)

https://www.interactivebrokers.com

20 reqMktData

reqMktData Request Market Data Feed from TWS

Description

Allows for streaming market data to be handled in R.

Usage

reqMktData(conn,
Contract,
tickGenerics = "100,101,104,106,165,221,225,236",
snapshot = FALSE,
tickerId = "1",
timeStamp = "%Y%m%d %H:%M:%OS",
playback = 1,
file = "",
verbose = TRUE,
eventWrapper = eWrapper(),
CALLBACK = twsCALLBACK, ...)

cancelMktData(conn,tickerId)

Arguments

conn a valid twsConnection or twsPlayback connection

Contract twsContract object(s) requested data for

tickGenerics a comman delimited string of generic tick types

snapshot should snapshot data be returned

tickerId the ticker id to associate with the returned data

timeStamp include R time stamps

playback playback speed adjustment

file passed to internal cat calls. See associated help

verbose print diagnostics?

eventWrapper eWrapper object

CALLBACK main reciever callback

... additional args

Details

This function provides R level access to market data streams as returned by the TWS API. The
Interactive Brokers documentation should be reference for the exact meaning of the returned data.

timeStamps is unique to the R API in that each incoming signal will be marked with a (po-
tentially) unique timestamp. Alternatively it is possible to pass a formatting string for use in

reqMktData 21

format(Sys.time()). To suppress the time stamp set the argument to NULL. This is not sent
by the TWS - merely prepended to the output by R.

Callbacks, via CALLBACK and eventWrapper are designed to allow for R level processing of the
real-time data stream.

Each message recieved (each update to the market data) will invoke one the appropriately names
eWrapper callback, depending on the message type. By default when nothing is specified, the code
will call the default method for printing the results to the screen via cat.

Note that the use of the argument file will be passed to these cat calls, and therefore it will be
possible to use the functionality of cat directly - e.g. piping output or writing to a connection. The
simplest use of file would be to specify the name of a file to append the output of the stream to.

The CALLBACK argument is used for more control of the incoming results. This requires user-level
error checking as well as TWS API interaction. It is here for advanced use and until documented
should be left alone.

Value

The real-time market data from the TWS.

Note

As R is single threaded - this request will run until interupted by an error or by user action. Both
will clean up after themselves when appropriate.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers API: https://interactivebrokers.github.io/tws-api/index.html

See Also

twsCALLBACK, eWrapper, twsConnect, twsContract

Examples

Not run:
tws <- twsConnect()
contract <- twsEquity("QQQQ","SMART","ISLAND")
reqMktData(tws, contract)

write to an open file connection
fh <- file('out.dat',open='a')
reqMktData(tws, contract, file=fh)
close(fh)

End(Not run)

https://interactivebrokers.github.io/tws-api/index.html

22 reqMktDataType

reqMktDataType Request Market Data Type from TWS

Description

Set the market data type with TWS

Usage

reqMktDataType(conn, mktDataType = 3)

Arguments

conn a valid twsConnection or twsPlayback connection

mktDataType market data type code

Details

This function sets the market data type that will be returned by TWS when reqMktData is called.

1 Real-time: Live data is streamed back in real time. Market data subscriptions are required to
receive live market data.

2 Frozen: Market data is the last data recorded at market close. Frozen data requires TWS/IBG
v.962 or higher and the same market data subscriptions necessary for real time streaming data.

3 Delayed: Market data 15-20 minutes behind real-time (depending on the exchange). Automati-
cally use delayed data if user does not have a real-time subscription. Ignored if real-time data
is available.

4 Delayed-frozen: Requests delayed "frozen" data for users without market data subscriptions.

Value

NULL (invisibly)

Author(s)

Joshua M. Ulrich

References

Interactive Brokers API: https://interactivebrokers.github.io/tws-api/index.html

See Also

twsConnect, reqMktData

https://interactivebrokers.github.io/tws-api/index.html

reqMktDepth 23

Examples

Not run:
tws <- twsConnect()
contract <- twsEquity("QQQQ","SMART","ISLAND")
set market data type to 'delayed'
reqMktDataType(tws, 3)
reqMktData(tws, contract)

End(Not run)

reqMktDepth Request Market Depth Feed from TWS

Description

Allows for streaming market depth (order book) data to be handled in R.

Usage

reqMktDepth(conn,
Contract,
tickerId = "1",
numRows = "20",
timeStamp = TRUE,
playback = 1,
file = "",
verbose = TRUE,
eventWrapper = eWrapper(),
CALLBACK = twsCALLBACK, ...)

cancelMktDepth(conn,tickerId)

Arguments

conn a valid twsConnection connection

Contract twsContract object(s) requested data for

tickerId the ticker id to associate with the returned data

numRows depth of book

timeStamp include R time stamps

playback playback speed adjustment

file passed to internal cat calls. See associated help.

verbose print diagnostics?

eventWrapper callback closure

CALLBACK main reciever loop

... additional args

24 reqMktDepth

Details

This function provides R level access to book data as returned by the TWS API. The Interactive
Brokers documentation should be reference for the exact meaning of the returned data.

timeStamps is unique to the R API in that each incoming signal will be marked with a (po-
tentially) unique timestamp. Alternatively it is possible to pass a formatting string for use in
format(Sys.time()). To suppress the time stamp set the argument to NULL.

Callbacks, via eventUpdateMktDepth, eventUpdateMktDepthL2, or CALLBACK are designed to
allow for R level processing of the real-time data stream.

The first two correspond to actions based upon the actual signal recieved. These may be user-
defined functions taking the appropriate arguments. Each message recieved (each update to the
market depth) will invoke one of these callbacks. By default when nothing is specified, the code
will call the default method for printing the results to the screen via cat.

Note that the use of the argument file will be passed to these cat calls, and therefore it will be
possible to use the functionality of cat directly - e.g. piping output or writing to a connection. The
simplest use of file would be to specify the name of a file to append the output of the stream to.

The CALLBACK argument is used for more control of the incoming results. This requires user-level
error checking as well as TWS API interaction. It is here for advanced use and until documented
should be left alone.

Value

The book depth.

Note

As R is single threaded - this request will run until interupted by an error or by user action. Both
will clean up after themselves when appropriate.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers API: https://interactivebrokers.github.io/tws-api/index.html

See Also

twsConnect,twsContract

Examples

Not run:
tws <- twsConnect()
contract <- twsEquity("QQQQ","SMART","ISLAND")
reqMktDepth(tws, contract)

write to a file

https://interactivebrokers.github.io/tws-api/index.html

reqNewsBulletins 25

reqMktDepth(tws, contract, file='out.dat')

End(Not run)

reqNewsBulletins Subscribe or Unsubscribe To News Bulletins

Description

Subscription start and end methods for the API.

Usage

reqNewsBulletins(twsconn, allMsgs=TRUE)

cancelNewsBulletins(twsconn)

Arguments

twsconn A twsConnection object

allMsgs Should all existing bulletins be returned (TRUE), or just new ones?

Details

Calling reqNewsBulletins will start a subscription via the API. This will continue and incoming
messages will be handled by eWrapper ‘updateNewBulletin’ method. Bulletins are cancelled by
calling the cancel version.

Value

Called for its side-effects.

Note

This is not “news” per se, it is a subscription to the API bulletins.

Author(s)

Jeffrey A. Ryan

References

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a286458a8be7d3b37f0d94fe61bf717fa

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a286458a8be7d3b37f0d94fe61bf717fa

26 reqRealTimeBars

reqRealTimeBars Request Real Time Bars from TWS

Description

Allows for streaming real-time bars to be handled in R

Usage

reqRealTimeBars(conn,
Contract,
whatToShow = "TRADES",
barSize = "5",
useRTH = TRUE,
playback = 1,
tickerId = "1",
file = "",
verbose = TRUE,
eventWrapper=eWrapper(),
CALLBACK=twsCALLBACK,
...)

cancelRealTimeBars(conn, tickerId)

Arguments

conn a valid twsConnection or twsPlayback object

Contract twsContract object(s) requested

tickerId the ticker id to associate with the returned bars

whatToShow what to show

barSize bar size - currently on 5 secs is TWS supported

playback playback speed adjustment

useRTH regular trading hours (logical)

file passed to internal cat calls. See associated help.

verbose print diagnostics

eventWrapper eventWrapper object

CALLBACK main reciever callback

... additional args to callback

reqRealTimeBars 27

Details

This function provides R level access to real time (5 second) bars returned by the TWS API. The
Interactive Brokers documentation should be reference for the exact meaning of the returned data.

If the conn is a connection of data to be played back all other arguments are ignores, except for
playback, which is a multiplier of the bar size in seconds. To force all data to be read without
pause set this to 0.

Callbacks, via eventRealTimeBars and CALLBACK are designed to allow for R level processing
of the real-time data stream.

eventWrapper allows for direct manipulation of the actual signal recieved. These may be user-
defined functions taking the appropriate arguments. Each message recieved (each new bar) will
invoke one of this callback. By default when nothing is specified, the code will call the default
method for printing the results to the screen via ’cat’.

Note that the use of the argument ’file’ will be passed to these ’cat’ calls, and therefore it will be
possible to use the functionality of ’cat’ directly - e.g. piping output or writing to a connection. The
simplest use of file would be to specify the name of a file, or open connection to append the output
of the stream to.

The ’CALLBACK’ argument is used for more control of the incoming results. This requires user-
level error checking as well as TWS API interaction. It is here for advanced use and until docu-
mented should be left alone.

Value

The real-time bar data requested.

Note

As R is single threaded - this request will run until interupted by an error or by user action. Both
will clean up after themselves when appropriate.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers TWS API https://interactivebrokers.github.io/tws-api/index.html

See Also

twsConnect,twsContract,eWrapper

Examples

Not run:
tws <- twsConnect()
contract <- twsEquity("QQQQ","SMART","ISLAND")
reqRealTimeBars(tws, contract)

https://interactivebrokers.github.io/tws-api/index.html

28 setServerLogLevel

write to an open file connection
fh <- file('out.dat',open='a')
reqRealTimeBars(tws, contract, file=fh)
close(fh)

End(Not run)

setServerLogLevel Enable API Logging Via TWS

Description

Set level of API logging to be done by TWS.

Usage

setServerLogLevel(conn, logLevel = 2)

Arguments

conn a valid twsConnection

logLevel an integer from 1 to 5

Details

Calling this function will set the logging level for the current connection according to the following
table:

1. 1:SYSTEM (least detail)

2. 2:ERROR (default)

3. 3:WARNING

4. 4:INFORMATION

5. 5:DETAIL (most detail)

See TWS documentation for further details.

Value

This function is called for its side-effects.

Note

The online documentation warns of performance overhead when setting logLevel=5.

Author(s)

Jeffrey A. Ryan

twsCALLBACK 29

References

TWS API Logging https://interactivebrokers.github.io/tws-api/support.html#tws_logs
https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a62ed6f4f391c86743c566d44c29dae48

twsCALLBACK Internal Data Callback Routine

Description

twsCALLBACK is the primary function that is called after a request for data is sent. Within this
call messages are recieved from the TWS, processed, and further actions can be handled.

Usage

twsCALLBACK(twsCon, eWrapper, timestamp, file, playback = 1, ...)

Arguments

twsCon a twsConnection object

eWrapper a closure created by eWrapper()

timestamp a logical indicating if timestamps should be created

file the file or connection to write to

playback is this a live or playback connection

... additional arguments to internal calls

Details

This function is used as the primary management tool within all data calls built into IBrokers.

It works as is, or can be modified to manage unique data and trading requirements.

The general logic of the function is to recieve the header to each incoming message from the TWS.
This then gets passed to the processMsg function, along with the eWrapper object.

The eWrapper object can maintain state data (prices), and has functions for managing all incoming
message types from the TWS.

Once the processMsg call returns, another cycle of the infinite loop occurs.

If the eWrapper object is used to maintain state information, it is possible to access this information
from outside of the processMsg call, and thus be able to apply trade logic based upon the data
acquired from the TWS.

An example will soon be available in the vignettes included in the package.

Value

No value is returned. This function is called for its side effects.

https://interactivebrokers.github.io/tws-api/support.html#tws_logs
https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a62ed6f4f391c86743c566d44c29dae48

30 twsConnect

Author(s)

Jeffrey A. Ryan

See Also

eWrapper

twsConnect Establish, Check or Terminate a Connection to TWS or IBG

Description

Functions to initiate, check, or disconnect from the Trader Workstation (TWS) or IB Gateway
(IBG).

Usage

twsConnect(clientId = 1, host = 'localhost',
port = 7496, verbose = TRUE, timeout = 5,
filename = NULL, blocking=.Platform$OS.type=="windows")

ibgConnect(clientId = 1, host = 'localhost',
port = 4001, verbose = TRUE, timeout = 5,
filename = NULL, blocking=.Platform$OS.type=="windows")

twsDisconnect(twsconn)

isConnected(twsconn)
is.twsConnection(x)
is.twsPlayback(x)

Arguments

clientId the unique client id to associate with

host the host server

port the port that the TWS is listening on

verbose should the connection attempt be verbose

timeout length in seconds before aborting attempt

filename file containing recorded TWS data

blocking should a blocking connection be established. See details.

twsconn a valid twsConnection object

x a connection to be checked

twsConnectionTime 31

Details

Returns a twsConnection object for use in subsequent TWS API calls. Attempting to create another
connection to the server with the same clientId will result in an error.

If filename is set to a file containing data recorded in the standard TWS format - calls using this
connection will playback the recorded data.

While the IBrokers package is fully cross-platform, the behavior of sockets varies by operating
system implementation. In general, setting blocking=TRUE on Windows (the default on Windows)
results in more consistent and reliable connections. This option is only exposed to enable debugging
of platform differences and optimization - and is not intended to be altered except in those cases.

Value

A twsconn object.

Note

While it is not strictly required to disconnect via twsDisconnect it is probably advisable.

If not set options(digits.secs=6) will be called internally to properly represent on screen the R based
timestamps.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers: https://www.interactivebrokers.com

Examples

Not run:
tws <- twsConnect()
twsDisconnect(tws)

End(Not run)

twsConnectionTime TWS API Utility Functions

Description

General API utility functions.

Usage

twsConnectionTime(con)

serverVersion(con)

https://www.interactivebrokers.com

32 twsContract

Arguments

con a twsConnection object

Details

This is simply extracted from the twsConnection object. No API request is made.

Value

The requested value.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers LLC https://www.interactivebrokers.com/

See Also

twsConnect

Examples

Not run:
twsConnectionTime(con)
serverVersion(con)

End(Not run)

twsContract Create a twsContract

Description

Create, test, and coerce a twsContract for use in API calls.

Usage

twsContract(conId,
symbol,
sectype,
exch,
primary,
expiry,
strike,
currency,

https://www.interactivebrokers.com/

twsContract 33

right,
local,
multiplier,
combo_legs_desc,
comboleg,
include_expired,
secIdType = "",
secId = "",
tradingClass = ""
)

is.twsContract(x)

as.twsContract(x, ...)

Arguments

conId the IB contract ID

symbol the IB symbol requested

sectype the security type

exch the requested exchange

primary the primary exchange of the security

expiry the expiration date

strike the strike price

currency the requested currency

right the requested right

local the local security name

multiplier the contract multiplier
combo_legs_desc

not implemented yet

comboleg not implemented yet
include_expired

should expired contracts be included

secIdType unique identifier for secIdType

secId security identifier: ISIN, CUSIP, SEDOL, RIC

tradingClass trading class name for this contract. Available in TWS contract description win-
dow as well. For example, the trading class for GBL Dec ’13 future’s is "FGBL".

x object to test or coerce

... additional arguments

Details

These are directly from the TWS API. See that help until I can find time to fill in this one.

More useful for specific requests are twsEquity, twsOption, twsBond, twsFuture, and twsCurrency.

34 twsCurrency

Value

A twsContract object.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers: https://www.interactivebrokers.com

See Also

reqHistoricalData

Examples

contract <- twsContract(0,"AAPL","STK","SMART","ISLAND",
"","0.0","USD","","","",NULL,NULL,"0")

twsCurrency Create a twsCurrency

Description

Create a twsCurrency for use in API calls.

Usage

twsCurrency(symbol,
currency='USD',
exch='IDEALPRO',
primary='',
strike='0.0',
right='',
local='',
multiplier='',
include_expired='0',
conId=0)

Arguments

symbol the IB symbol requested

currency the requested currency

exch the requested exchange

primary the primary exchange of the security

https://www.interactivebrokers.com

twsEquity 35

strike the strike price

right the requested right

local the local security name

multiplier the contract multiplier

include_expired

should expired contracts be included

conId contract ID

Details

A wrapper to twsContract to make ‘currency/FX’ contracts easier to specify.

twsCASH is an alias.

Value

A twsContract object.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers: https://www.interactivebrokers.com

See Also

reqHistoricalData, twsContract

Examples

currency <- twsCurrency("EUR")

twsEquity Create a twsEquity

Description

Create a twsEquity for use in API calls.

https://www.interactivebrokers.com

36 twsEquity

Usage

twsEquity(symbol,
exch="SMART",
primary,
strike='0.0',
currency='USD',
right='',
local='',
multiplier='',
include_expired='0',
conId=0)

Arguments

symbol the IB symbol requested

exch the requested exchange (defaults to ‘SMART’)

primary the primary exchange of the security

strike the strike price

currency the requested currency

right the requested right

local the local security name

multiplier the contract multiplier
include_expired

should expired contracts be included

conId contract ID

Details

A wrapper to twsContract to make ‘equity’ contracts easier to specify.

twsSTK is an alias.

Value

A twsContract object.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers: https://www.interactivebrokers.com

See Also

reqHistoricalData, twsContract

https://www.interactivebrokers.com

twsFuture 37

Examples

equity <- twsEquity("AAPL","SMART","ISLAND")

twsFuture Create a twsFuture Contract

Description

Create a twsFuture contract for use in API calls.

Usage

twsFuture(symbol,
exch,
expiry,
primary='',
currency='USD',
right='',
local='',
multiplier='',
include_expired='0',
conId=0)

Arguments

symbol the IB symbol requested

exch the requested exchange

expiry the requested contract expiration

primary the primary exchange of the security

currency the requested currency

right the requested right

local the local security name

multiplier the contract multiplier
include_expired

should expired contracts be included

conId contract ID

Details

A wrapper to twsContract to make ‘futures’ contracts easier to specify.

twsFUT is an alias.

Value

A twsContract object.

38 twsOption

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers: https://www.interactivebrokers.com

See Also

reqHistoricalData, twsContract

Examples

future <- twsFuture("NQ","GLOBEX","200803")

twsOption Create a twsContract for Options

Description

Create a twsContract for use in API calls.

Usage

twsOption(local,
expiry="",
strike="",
right="",
exch="SMART",
primary="",
currency='USD',
symbol='',
multiplier="100",
include_expired='0',
conId=0)

Arguments

local the IB symbol requested

expiry option expiration CCYYMM [optional]

strike the strike price [optional]

right the requested right - ‘C’,‘CALL’, ‘P’, or ‘PUT’ [optional]

exch the requested exchange [optional, defaults to SMART]

primary the primary exchange of the security [optional]

currency the requested currency [defaults to USD]

https://www.interactivebrokers.com

twsOption 39

symbol the security name [optional]

multiplier the contract multiplier
include_expired

should expired contracts be included [defaults to “0” (false)]

conId contract ID

Details

A wrapper to twsContract to make ‘option’ contracts easier to specify.

Some of the optionable parameters are contingent on the request being made. Refer to the TWS
documentation for details.

twsOPT is an alias.

Value

A twsContract object.

Note

Option contracts on the TWS have certain rules which are different than standard data requests.

The local symbol is required. This can be found on the main TWS screen under contract details,
or via the web at https://www.interactivebrokers.com

Since the local symbol is required, all other values are redundant. It is best to simply specify the
local name and let the TWS manage the lookup.

The expiry needs to be either of class Date to be coerced to a string of format ‘CCYYMM’, or
provided in that format.

Historical requests cannot be for a barSize=‘1 D’ or less frequent.

barSize must be "1 min" per Interactive Brokers API.

Author(s)

Jeffrey A. Ryan

References

Interactive Brokers: https://www.interactivebrokers.com

See Also

reqMktData, twsContract

Examples

opt <- twsOption("QQQAS",expiry="200901", strike="45.0", right="C")

https://www.interactivebrokers.com
https://www.interactivebrokers.com

40 twsOrder

twsOrder Create twsOrder Object

Description

Create twsOrder object for placeOrder API call.

Usage

twsOrder(orderId,
action = "BUY",
totalQuantity = "10",
orderType = "LMT",
lmtPrice = "0.0",
auxPrice = "0.0",
tif = "",
outsideRTH = "0",
openClose = "O",
origin = .twsOrderID$CUSTOMER,
ocaGroup = "",
account = "",
orderRef = "",
transmit = TRUE,
parentId = "0",
blockOrder = "0",
sweepToFill = "0",
displaySize = "0",
triggerMethod = "0",
hidden = "0",
discretionaryAmt = "0.0",
goodAfterTime = "",
goodTillDate = "",
faGroup = "",
faMethod = "",
faPercentage = "",
faProfile = "",
shortSaleSlot = "0",
designatedLocation = .twsOrderID$EMPTY_STR,
ocaType = "0",
rule80A = "",
settlingFirm = "",
clearingAccount = "",
clearingIntent = "",
allOrNone = "0",
minQty = "",
percentOffset = "",
eTradeOnly = "0",

twsOrder 41

firmQuoteOnly = "0",
nbboPriceCap = "",
auctionStrategy = "0",
startingPrice = "",
stockRefPrice = "",
delta = "",
stockRangeLower = "",
stockRangeUpper = "",
overridePercentageConstraints = "0",
volatility = "",
volatilityType = "",
deltaNeutralOrderType = "",
deltaNeutralAuxPrice = "",
continuousUpdate = "0",
referencePriceType = "",
trailStopPrice = "",
basisPoints = "",
basisPointsType = "",
scaleInitLevelSize = "",
scaleSubsLevelSize = "",
scalePriceIncrement = "",
notHeld = FALSE,
algoStrategy = "",
algoParams = NULL,
whatIf = FALSE,
clientId = "",
permId = "",
exemptCode = "-1",
hedgeType = "",
hedgeParam = "",
optOutSmartRouting = FALSE,
scaleTable = "",
activeStartTime = "",
activeStopTime = "",
trailingPercent = "",
deltaNeutralConId = "0",
deltaNeutralSettlingFirm = "",
deltaNeutralClearingAccount = "",
deltaNeutralClearingIntent = "",
deltaNeutralOpenClose = "",
deltaNeutralShortSale = "0",
deltaNeutralShortSaleSlot = "0",
deltaNeutralDesignatedLocation = "",
scalePriceAdjustValue = "0",
scalePriceAdjustInterval = "0",
scaleProfitOffset = "0",
scaleAutoReset = "0",
scaleInitPosition = "0",

42 twsOrder

scaleInitFillQty = "0",
scaleRandomPercent = "0",
smartComboRoutingParams = NULL,
smartComboRoutingParamsCount = "0",
orderComboLegs = NULL,
orderComboLegsCount = "0",
comboLegs = NULL,
comboLegsCount = "0",
orderMiscOptions = NULL
)

Arguments

orderId The id for the order. Use reqIds.

action Identifies the side. (BUY, SELL, SSHORT)

totalQuantity Order quantity.

orderType Order type. (MKT, MKTCLS, LMT, LMTCLS, PEGMKT, SCALE, STP, STPLMT,
TRAIL, REL, VWAP, TRAILLIMIT)

lmtPrice The LIMIT price for LMT, STPLMT and REL orderType

auxPrice The STOP price for STPLMT (stop-limit) orders, and the offset for REL (rela-
tive) orders

tif Time in force. (DAY, GTC, IOC, GTD)

outsideRTH Allow orders to trigger outside of regular trading hours.

openClose Specify whether order is open or close only. (Institutional Accounts Only)

origin The order origin. 0=customer, 1=firm (Institutional Accounts Only)

ocaGroup Identifies OCA group.

account The account (Institutional Accounts Only)

orderRef The order reference (Institutional Accounts Only)

transmit Specify whether the order is transmitted to the TWS. If FALSE, order is created
but not sent. (not implemented)

parentId The orderId of the parent order, used for bracket and auto trailing stop orders.

blockOrder ISE block order?

sweepToFill Sweep to fill order?

displaySize Publicly disclosed order size for Iceberg orders.

triggerMethod How should simulated orders be triggered. Valid values are 0-8. See the official
API for details.

hidden Hide order on ISLAND?
discretionaryAmt

Amount off limit for discretionary orders.

goodAfterTime Trades Good After Time: YYYYMMDD hh:mm:ss or ""

goodTillDate Trades Good Till Date: YYYYMMDD hh:mm:ss or ""

faGroup NA

twsOrder 43

faMethod NA

faPercentage NA

faProfile NA

shortSaleSlot 1 or 2
designatedLocation

Only when shortSaleSlot=2

ocaType Cancel on Fill with Block = 1 Reduce on Fill with Block = 2 Reduce on Fill
without Block = 3

rule80A Valid values: I, A, W, J, U, M, K, Y, N. See API.

settlingFirm (Institutional Only)
clearingAccount

IBExecution customers only.

clearingIntent IBExecution customers only.

allOrNone yes=1, no=0

minQty Minimum quantity order type.

percentOffset Percent offset for REL (relative) orders.

eTradeOnly Trade with electronic quotes. yes=1, no=0.

firmQuoteOnly Trade with firm quotes. yes=1, no=0.

nbboPriceCap The maximum Smart order distance from the NBBO.
auctionStrategy

BOX only. See API.

startingPrice BOX only. See API.

stockRefPrice The stock reference price. VOL orders. See API.

delta BOX only. See API.
stockRangeLower

See API.
stockRangeUpper

See API.
overridePercentageConstraints

See API.

volatility See API.

volatilityType See API.
deltaNeutralOrderType

See API.
deltaNeutralAuxPrice

See API.
continuousUpdate

See API.
referencePriceType

See API.

trailStopPrice For TRAILLIMIT orders only.

44 twsOrder

basisPoints EFP orders only.
basisPointsType

EFP orders only.
scaleInitLevelSize

For Scale orders. See API.
scaleSubsLevelSize

For Scale orders. See API.
scalePriceIncrement

For Scale orders. See API.

notHeld See API and guess.

algoStrategy See API and guess.

algoParams See API and guess.

whatIf Use to request pre-trade commissions and margin information. TRUE/FALSE

clientId Id of the client that placed the order.

permId TWS id used to identify orders. Constant over a session.

exemptCode Mark order as exempt from short sale uptick rule.

hedgeType For hedge orders. Possible values include: D=delta, B=beta, F=FX, P=Pair

hedgeParam Beta = x for Beta hedge orders, ratio = y for Pair hedge order
optOutSmartRouting

Use to opt out of default SmartRouting for orders routed directly to ASX. This
attribute defaults to false unless explicitly set to true. When set to false, orders
routed directly to ASX will NOT use SmartRouting. When set to true, orders
routed directly to ASX orders WILL use SmartRouting.

scaleTable Used for scale orders
activeStartTime

for GTC orders

activeStopTime for GTC orders
trailingPercent

Specifies the trailing amount of a trailing stop order as a percentage. See the
API docs for guidelines.

deltaNeutralConId

See API docs
deltaNeutralSettlingFirm

See API docs
deltaNeutralClearingAccount

See API docs
deltaNeutralClearingIntent

See API docs
deltaNeutralOpenClose

Specifies whether the order is an Open or a Close order and is used when the
hedge involves a CFD and and the order is clearing away.

deltaNeutralShortSale

Used when the hedge involves a stock and indicates whether or not it is sold
short.

twsOrder 45

deltaNeutralShortSaleSlot

Has a value of 1 (the clearing broker holds shares) or 2 (delivered from a third
party). If you use 2, then you must specify a deltaNeutralDesignatedLocation.

deltaNeutralDesignatedLocation

Used only when deltaNeutralShortSaleSlot = 2.
scalePriceAdjustValue

For extended Scale orders
scalePriceAdjustInterval

For extended Scale orders
scaleProfitOffset

For extended Scale orders

scaleAutoReset For extended Scale orders
scaleInitPosition

For extended Scale order
scaleInitFillQty

For extended Scale orders
scaleRandomPercent

For extended Scale orders
smartComboRoutingParams

Advanced parameters for Smart combo routing .
smartComboRoutingParamsCount

Number of parameters

orderComboLegs List of Per-leg price following the same sequence combo legs are added. The
combo price must be left unspecified when using per-leg prices.

orderComboLegsCount

Number of parameters

comboLegs See API docs

comboLegsCount See API docs
orderMiscOptions

See API docs

Details

Read the API documentation, code, and experiment with the paper accounts. And good luck!

Value

Called for its side-effects.

Note

Documentation is far from complete on this topic. Experiment and share your experiences.

Author(s)

Jeffrey A. Ryan

46 twsScannerSubscription

References

Order API: https://interactivebrokers.github.io/tws-api/order_management.html

See Also

placeOrder

twsScannerSubscription

Create ScannerSubscription

Description

Create an object for use with reqScannerSubscription and .reqScannerSubscription.

Usage

twsScannerSubscription(numberOfRows = -1,
instrument = "",
locationCode = "",
scanCode = "",
abovePrice = "",
belowPrice = "",
aboveVolume = "",
averageOptionVolumeAbove = "",
marketCapAbove = "",
marketCapBelow = "",
moodyRatingAbove = "",
moodyRatingBelow = "",
spRatingAbove = "",
spRatingBelow = "",
maturityDateAbove = "",
maturityDateBelow = "",
couponRateAbove = "",
couponRateBelow = "",
excludeConvertible = "",
scannerSettingPairs = "",
stockTypeFilter = "")

Arguments

numberOfRows Number of rows of scanner results returned

instrument A character string of STK, ...

locationCode A character string of STK.NA, STK.US, STK.US.MAJOR, ...

scanCode One of the available scans. See details

abovePrice Price to filter above

https://interactivebrokers.github.io/tws-api/order_management.html

twsScannerSubscription 47

belowPrice Price to filter below

aboveVolume Volume to filter above
averageOptionVolumeAbove

Average option volume above this

marketCapAbove Market cap to filter above

marketCapBelow Market cap to filter below
moodyRatingAbove

Moody rating to filter above
moodyRatingBelow

Moody rating to filter below

spRatingAbove S&P rating to filter above

spRatingBelow S&P rating to filter below
maturityDateAbove

Maturity date to filter above
maturityDateBelow

Maturity date to filter below
couponRateAbove

Coupon rate to filter above
couponRateBelow

Coupon rate to filter below
excludeConvertible

?
scannerSettingPairs

?
stockTypeFilter

"ALL"?

Details

By necessity, design, or otherwise - scanner data is difficult to correctly use at the API level. The
valid values and some small examples are returned by the API using the related reqScannerParameters
function. The XML returned by that call isn‘t very clear in its value or purpose though.

Value

A (potentially) valid twsScannerSubscription object for reqScannerSubscription calls.

Note

Further documentation will be forthcoming. Users are encouraged to email use cases to make for
better documentation.

Author(s)

Jeffrey A. Ryan

48 twsScannerSubscription

References

https://interactivebrokers.github.io/tws-api/classIBApi_1_1ScannerSubscription.
html

See Also

reqScannerSubscription,

Examples

scnr <- twsScannerSubscription(numberOfRows=10,
instrument="STK",
locationCode="STK.US.MAJOR",
scanCode="TOP_PERC_GAIN",
aboveVolume=0,
marketCapAbove=1e8,
scannerSettingPairs="Annual,true",
stockTypeFilter="ALL")

scnr

https://interactivebrokers.github.io/tws-api/classIBApi_1_1ScannerSubscription.html
https://interactivebrokers.github.io/tws-api/classIBApi_1_1ScannerSubscription.html

Index

∗ class
twsScannerSubscription, 46

∗ misc
calculateImpliedVolatility, 5
exerciseOptions, 8
reqAccountUpdates, 11
reqNewsBulletins, 25
twsCALLBACK, 29

∗ package
IBrokers-package, 2

∗ utilities
.placeOrder, 4
.twsIncomingMSG, 5
eWrapper, 6
processMsg, 10
reqAccountUpdates, 11
reqContractDetails, 12
reqCurrentTime, 14
reqHistoricalData, 15
reqIds, 17
reqManagedAccts, 18
reqMatchingSymbols, 19
reqMktData, 20
reqMktDataType, 22
reqMktDepth, 23
reqRealTimeBars, 26
setServerLogLevel, 28
twsCALLBACK, 29
twsConnect, 30
twsConnectionTime, 31
twsContract, 32
twsCurrency, 34
twsEquity, 35
twsFuture, 37
twsOption, 38
twsOrder, 40

.lastRequest (.twsIncomingMSG), 5

.placeOrder, 4

.reqAccountUpdates (reqAccountUpdates),

11
.reqIds (reqIds), 17
.twsERR (.twsIncomingMSG), 5
.twsIncomingMSG, 5
.twsOutgoingMSG (.twsIncomingMSG), 5

as.twsContract (twsContract), 32

calculateImpliedVolatility, 5
calculateOptionPrice

(calculateImpliedVolatility), 5
cancelAccountUpdates

(reqAccountUpdates), 11
cancelHistoricalData

(reqHistoricalData), 15
cancelMktData (reqMktData), 20
cancelMktDepth (reqMktDepth), 23
cancelNewsBulletins (reqNewsBulletins),

25
cancelOrder (.placeOrder), 4
cancelRealTimeBars (reqRealTimeBars), 26

eWrapper, 6, 11, 21, 27, 30
exerciseOptions, 8

ibgConnect (twsConnect), 30
IBrokers (IBrokers-package), 2
IBrokers-package, 2
IBrokersRef (IBrokers-package), 2
is.twsConnection (twsConnect), 30
is.twsContract (twsContract), 32
is.twsPlayback (twsConnect), 30
isConnected (twsConnect), 30

placeOrder, 46
placeOrder (.placeOrder), 4
processMsg, 8, 10

replaceFA (.twsIncomingMSG), 5
reqAccountUpdates, 11
reqContractDetails, 12

49

50 INDEX

reqCurrentTime, 14
reqExecutions (.twsIncomingMSG), 5
reqHistoricalData, 15, 34–36, 38
reqHistory (reqHistoricalData), 15
reqIds, 5, 17
reqManagedAccts, 18
reqMatchingSymbols, 19
reqMktData, 20, 22, 39
reqMktDataType, 22
reqMktDepth, 23
reqNewsBulletins, 25
reqOpenOrders (.twsIncomingMSG), 5
reqRealTimeBars, 26
reqScannerParameters (.twsIncomingMSG),

5
reqScannerSubscription, 48
reqScannerSubscription

(.twsIncomingMSG), 5
requestFA (.twsIncomingMSG), 5

serverVersion (twsConnectionTime), 31
setServerLogLevel, 28

twsBAG (.twsIncomingMSG), 5
twsCALLBACK, 8, 11, 21, 29
twsCASH (twsCurrency), 34
twsCFD (twsEquity), 35
twsComboLeg (.twsIncomingMSG), 5
twsConnect, 17, 21, 22, 24, 27, 30, 32
twsConnect2 (twsConnect), 30
twsConnectionTime, 31
twsContract, 5, 13, 17, 21, 24, 27, 32, 35, 36,

38, 39
twsCurrency, 34
twsDEBUG (.twsIncomingMSG), 5
twsDisconnect (twsConnect), 30
twsEquity, 35
twsExecutionFilter (.twsIncomingMSG), 5
twsFOP (twsFuture), 37
twsFUT (twsFuture), 37
twsFuture, 37
twsFutureOpt (twsFuture), 37
twsIND (twsContract), 32
twsIndex (twsContract), 32
twsOPT (twsOption), 38
twsOption, 38
twsOrder, 5, 40
twsPortfolioValue (reqAccountUpdates),

11

twsScannerSubscription, 46
twsSTK (twsEquity), 35

	IBrokers-package
	.placeOrder
	.twsIncomingMSG
	calculateImpliedVolatility
	eWrapper
	exerciseOptions
	processMsg
	reqAccountUpdates
	reqContractDetails
	reqCurrentTime
	reqHistoricalData
	reqIds
	reqManagedAccts
	reqMatchingSymbols
	reqMktData
	reqMktDataType
	reqMktDepth
	reqNewsBulletins
	reqRealTimeBars
	setServerLogLevel
	twsCALLBACK
	twsConnect
	twsConnectionTime
	twsContract
	twsCurrency
	twsEquity
	twsFuture
	twsOption
	twsOrder
	twsScannerSubscription
	Index

