
Package: quantmod (via r-universe)
August 23, 2024

Type Package

Title Quantitative Financial Modelling Framework

Version 0.4.26.1

Depends R (>= 3.2.0), xts(>= 0.9-0), zoo, TTR(>= 0.2), methods

Imports curl, jsonlite(>= 1.1)

Suggests DBI,RMySQL,RSQLite,timeSeries,xml2,downloader

Description Specify, build, trade, and analyse quantitative financial
trading strategies.

LazyLoad yes

License GPL-3

URL https://www.quantmod.com/,

https://github.com/joshuaulrich/quantmod

BugReports https://github.com/joshuaulrich/quantmod/issues

Repository https://joshuaulrich.r-universe.dev

RemoteUrl https://github.com/joshuaulrich/quantmod

RemoteRef HEAD

RemoteSha e8d937ed3592dfa856c79a20e96d2e9872bc02b4

Contents
quantmod-package . 3
addADX . 4
addBBands . 5
addCCI . 6
addExpiry . 7
addMA . 8
addMACD . 9
addROC . 10
addRSI . 11
addSAR . 12

1

https://www.quantmod.com/
https://github.com/joshuaulrich/quantmod
https://github.com/joshuaulrich/quantmod/issues

2 Contents

addSMI . 13
addVo . 14
addWPR . 15
adjustOHLC . 16
attachSymbols . 17
buildData . 19
buildModel . 21
chartSeries . 22
chartTheme . 25
chart_Series . 27
chob-class . 28
chobTA-class . 29
create.binding . 30
Defaults . 31
Delt . 33
findPeaks . 35
fittedModel . 36
getDividends . 38
getFinancials . 39
getFX . 41
getMetals . 42
getModelData . 44
getOptionChain . 45
getOptionChain.orats . 46
getQuote . 47
getSplits . 49
getSymbols . 50
getSymbols.av . 54
getSymbols.csv . 56
getSymbols.FRED . 57
getSymbols.MySQL . 59
getSymbols.oanda . 61
getSymbols.rda . 63
getSymbols.SQLite . 64
getSymbols.tiingo . 66
getSymbols.yahoo . 68
getSymbols.yahooj . 70
has.OHLC . 72
internal-quantmod . 73
is.quantmod . 74
Lag . 74
modelData . 76
modelSignal . 77
newTA . 77
Next . 81
OHLC.Transformations . 82
options.expiry . 85
periodReturn . 86

quantmod-package 3

quantmod-class . 88
quantmod.OHLC . 89
saveChart . 90
setSymbolLookup . 91
setTA . 93
specifyModel . 94
TA . 96
tradeModel . 98
zoomChart . 99

Index 101

quantmod-package Quantitative Financial Modelling Framework

Description

Quantitative Financial Modelling and Trading Framework for R

Details

The quantmod package for R is designed to assist the quantitative trader in the development, testing,
and deployment of statistically based trading models.

What quantmod IS

A rapid prototyping environment, with comprehensive tools for data management and visualization.
where quant traders can quickly and cleanly explore and build trading models.

What quantmod is NOT

A replacement for anything statistical. It has no ’new’ modelling routines or analysis tool to speak
of. It does now offer charting not currently available elsewhere in R, but most everything else
is more of a wrapper to what you already know and love about the langauge and packages you
currently use.

quantmod makes modelling easier by removing the repetitive workflow issues surrounding data
management, modelling interfaces, and performance analysis.

Author(s)

Jeffrey A. Ryan

Maintainer: Joshua M. Ulrich <josh.m.ulrich@gmail.com>

4 addADX

addADX Add Directional Movement Index

Description

Add Directional Movement Index

Usage

addADX(n = 14, maType="EMA", wilder=TRUE)

Arguments

n periods to use for DX calculation

maType moving average type

wilder should Welles Wilder EMA be used?

Details

See ’ADX’ in TTR for specific details and references.

Value

An ADX indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see ADX in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addADX()

End(Not run)

addBBands 5

addBBands Add Bollinger Bands to Chart

Description

Add Bollinger Bands to current chart.

Usage

addBBands(n = 20, sd = 2, maType = "SMA", draw = 'bands', on = -1)

Arguments

n number of moving average periods

maType type of moving average to be used

sd number of standard deviations

draw indicator to draw: bands, percent, or width

on which figure area of chart to apply to

Details

The primary addition to this function call over the TTR version is in the draw argument. ‘bands’ will
draw standard Bollinger Bands, ‘percent’ will draw Bollinger %b and ‘width’ will draw Bolinger
Bands Width. The last two will be drawn in new figure regions.

See bollingerBands in TTR for specific details as to implementation and references.

Value

Bollinger Bands will be drawn, or scheduled to be drawn, on the current chart. If draw is either
percent or width a new figure will be added to the current TA figures charted.

A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

See bollingerBands in TTR written by Josh Ulrich

See Also

addTA

6 addCCI

Examples

Not run:
addBBands()

End(Not run)

addCCI Add Commodity Channel Index

Description

Add Commodity Channel Index

Usage

addCCI(n = 20, maType="SMA", c=0.015)

Arguments

n periods to use for DX calculation

maType moving average type

c Constant to apply to the mean deviation.

Details

See ’CCI’ in TTR for specific details and references.

Value

An CCI indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see CCI in TTR written by Josh Ulrich

See Also

addTA

addExpiry 7

Examples

Not run:
addCCI()

End(Not run)

addExpiry Add Contract Expiration Bars to Chart

Description

Apply options or futures expiration vertical bars to current chart.

Usage

addExpiry(type = "options", lty = "dotted")

Arguments

type options or futures expiration

lty type of lines to draw

Details

See options.expiry and futures.expiry in quantmod for details and limitations.

Value

Expiration lines will be drawn at appropriate dates. A chibTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

See Also

addTA

Examples

Not run:
addExpiry()

End(Not run)

8 addMA

addMA Add Moving Average to Chart

Description

Add one or more moving averages to a chart.

Usage

addSMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "brown")

addEMA(n = 10, wilder = FALSE, ratio=NULL, on = 1,
with.col = Cl, overlay = TRUE, col = "blue")

addWMA(n = 10, wts=1:n, on = 1, with.col = Cl, overlay = TRUE, col = "green")

addDEMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "pink")

addEVWMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "yellow")

addZLEMA(n = 10, ratio=NULL, on = 1, with.col = Cl, overlay = TRUE, col = "red")

Arguments

n periods to average over

wilder logical; use wilder?

wts a vector of weights

ratio a smoothing/decay ratio

on apply to which figure (see below)

with.col using which column of data (see below)

overlay draw as overlay

col color of MA

Details

see the appropriate base MA functions in TTR for more details and references.

Value

A moving average indicator will be draw on the current chart. A chobTA object will be returned
silently.

Author(s)

Jeffrey A. Ryan

addMACD 9

References

see MovingAverages in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addSMA()
addEMA()
addWMA()
addDEMA()
addEVWMA()
addZLEMA()

End(Not run)

addMACD Add Moving Average Convergence Divergence to Chart

Description

Add Moving Average Convergence Divergence indicator to chart.

Usage

addMACD(fast = 12, slow = 26, signal = 9, type = "EMA", histogram = TRUE, col)

Arguments

fast fast period

slow slow period

signal signal period

type type of MA to use. Single values will be replicated

histogram include histogram

col colors to use for lines (optional)

Details

See and ’MACD’ in TTR for specific details and implementation references.

Value

A MACD indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

10 addROC

Author(s)

Jeffrey A. Ryan

References

see MACD in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addMACD()

End(Not run)

addROC Add Rate Of Change to Chart

Description

Add Rate Of Change indicator to chart.

Usage

addROC(n = 1, type = c("discrete", "continuous"), col = "red")

Arguments

n periods

type compounding type

col line color (optional)

Details

See ’ROC’ in TTR for specific details and references.

Value

A ROC indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

addRSI 11

References

see ROC in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addROC()

End(Not run)

addRSI Add Relative Strength Index to Chart

Description

Add a Relative Strength Index indicator to chart.

Usage

addRSI(n = 14, maType = "EMA", wilder = TRUE)

Arguments

n periods

maType type of MA to use

wilder use wilder (see EMA)

Details

see ’RSI’ in TTR for specific details and references.

Value

An RSI indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see RSI in TTR written by Josh Ulrich

12 addSAR

See Also

addTA

Examples

Not run:
addRSI()

End(Not run)

addSAR Add Parabolic Stop and Reversal to Chart

Description

Add Parabolic Stop and Reversal indicator overlay to chart.

Usage

addSAR(accel = c(0.02, 0.2), col = "blue")

Arguments

accel Accelleration factors - see SAR

col color of points (optional)

Details

see ’SAR’ in TTR for specific details and references.

Value

A SAR overlay will be drawn on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see SAR in TTR written by Josh Ulrich

See Also

addTA

addSMI 13

Examples

Not run:
addSAR()

End(Not run)

addSMI Add Stochastic Momentum Indicator to Chart

Description

Add Stochastic Momentum Indicator to chart.

Usage

addSMI(n=13,slow=25,fast=2,signal=9,ma.type="EMA")

Arguments

n periods

slow slow

fast fast

signal signal

ma.type MA tyep to use, recycled as necessary

Details

see ’SMI in TTR for specifics and references.

Value

An SMI indicator will be draw in a new window on the current chart. A chobTA object will be
returned silently.

Author(s)

Jeffrey A. Ryan

References

see SMI in TTR written by Josh Ulrich

See Also

addTA

14 addVo

Examples

Not run:
addSMI()

End(Not run)

addVo Add Volume to Chart

Description

Add Volume of a series, if available, to the current chart. This is the default TA argument for all
charting functions.

Usage

addVo(log.scale=FALSE)

Arguments

log.scale use log-scale for volume

Details

Add volume bars to current chart if data object contains appropriate volume column.

log.scale will transform the series via standard R graphics mechanisms.

Value

Volume will be draw in a new window on the current chart. A chobTA object will be returned
silently.

Author(s)

Jeffrey A. Ryan

See Also

addTA

Examples

Not run:
addVo()

End(Not run)

addWPR 15

addWPR Add William’s Percent R to Chart

Description

Add William’s percent R indiator to the current chart.

Usage

addWPR(n = 14)

Arguments

n periods

Details

see ’WPR’ in TTR for details and references.

Value

A William’s percent R indicator will be draw in a new window on the current chart. A chobTA
object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see ’WPR’ in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addWPR()

End(Not run)

16 adjustOHLC

adjustOHLC Adjust Open,High,Low,Close Prices For Splits and Dividends

Description

Adjust all columns of an OHLC object for split and dividend.

Usage

adjustOHLC(x,
adjust = c("split","dividend"),
use.Adjusted = FALSE,
ratio = NULL,
symbol.name=deparse(substitute(x)))

Arguments

x An OHLC object

adjust adjust by split, dividend, or both (default)

use.Adjusted use the ‘Adjusted’ column in Yahoo! data to adjust

ratio ratio to adjust with, bypassing internal calculations

symbol.name used if x is not named the same as the symbol adjusting

Details

This function calculates the adjusted Open, High, Low, and Close prices according to split and
dividend information.

There are three methods available to calculate the new OHLC object prices.

By default, getSplits and getDividends are called to retrieve the respective information. These
may dispatch to custom methods following the “.” methodology used by quantmod dispatch.
See getSymbols for information related to extending quantmod. This information is passed to
adjRatios from the TTR package, and the resulting ratio calculations are used to adjust to ob-
served historical prices. This is the most precise way to adjust a series.

The second method works only on standard Yahoo! data containing an explicit Adjusted column.

A final method allows for one to pass a ratio into the function directly.

All methods proceed as follows:

New columns are derived by taking the ratio of adjusted value to original Close, and multiplying by
the difference of the respective column and the original Close. This is then added to the modified
Close column to arrive at the remaining ‘adjusted’ Open, High, Low column values.

If no adjustment is needed, the function returns the original data unaltered.

Value

An object of the original class, with prices adjusted for splits and dividends.

attachSymbols 17

Warning

Using use.Adjusted = TRUE will be less precise than the method that employs actual split and
dividend information. This is due to loss of precision from Yahoo! using Adjusted columns of only
two decimal places. The advantage is that this can be run offline, and for short series or those with
few adjustments the loss of precision will be small.

The resulting precision loss will be from row observation to row observation, as the calculation will
be exact for intraday values.

Author(s)

Jeffrey A. Ryan

References

Yahoo Finance https://finance.yahoo.com

See Also

getSymbols.yahoo getSplits getDividends

Examples

Not run:
getSymbols("AAPL", from="1990-01-01", src="yahoo")
head(AAPL)
head(AAPL.a <- adjustOHLC(AAPL))
head(AAPL.uA <- adjustOHLC(AAPL, use.Adjusted=TRUE))

intraday adjustments are precise across all methods
an example with Open to Close (OpCl)
head(cbind(OpCl(AAPL),OpCl(AAPL.a),OpCl(AAPL.uA)))

Close to Close changes may lose precision
head(cbind(ClCl(AAPL),ClCl(AAPL.a),ClCl(AAPL.uA)))

End(Not run)

attachSymbols Attach and Flush DDB

Description

Attach a demand database (lazy load) as a new environment.

https://finance.yahoo.com

18 attachSymbols

Usage

attachSymbols(DB = DDB_Yahoo(),
pos = 2,
prefix = NULL,
postfix = NULL,
mem.cache = TRUE,
file.cache = !mem.cache,
cache.dir = tempdir())

flushSymbols(DB = DDB_Yahoo())

Arguments

DB A DDB data base object

pos position in search path to attach DB

prefix character to prefix all symbols with

postfix character to postfix all symbols with

mem.cache should objects be cached in memory

file.cache should objects be cached in on disk

cache.dir directory to use for file.cache=TRUE

Details

An experimental function to allow access to remote objects without requiring explicit calls to a
loading function.

attachSymbols requires a DDB object to define where the data is to come from, as well as what
symbols are loaded on-demand.

attachSymbols calls the method referred to by the DDB object. In the default case this is DDB_Yahoo.
See this function for specific details about the Yahoo implementation.

The individual methods make use of getSymbols to load the data. This requires a corresponding
getSymbols method.

Internally, attachSymbols makes use of quantmod’s unexported create.bindings to dynamically cre-
ate active bindings to each symbol listed in the DDB object.

In turn, create.bindings uses one of two R methods to create the binding to the names required. This
depends on the cache method requested.

Immediately after a call to attachSymbols, a new environment is attached that contains the names
of objects yet to be loaded. This is similar to the lazy-load mechanism in R, though extended to be
both more general and easier to use.

It is important to note that no data is loaded at this stage. What occurs instead is that these sym-
bols now have active bindings using either delayedAssign (mem.cache) or makeActiveBinding
(file.cache).

During all future requests for the object(s) in question, the binding will be used to determine how
this data is loaded into R. mem.cache will simply load the data from its corresponding source (as
defined by the DDB object) and leave it in the environment specified in the original call. The effect

buildData 19

of this is to allow lazy-loading of data from a variety of external sources (Yahoo in the default case).
Once loaded, these are cached in R’s memory. Nothing further differentiates these from standard
variables. This also means that the environment will grow as more symbols are loaded.

If the file.cache option is set, the data is loaded from its source the first time the symbol is refer-
enced. The difference is that the data is then written to a temporary file and maintained there. Data
is loaded and subsequently removed upon each request for the object. See makeActiveBinding for
details of how this occurs at the R level.

A primary advantage of using the file.cache option is the ability to maintain hundreds or thousands
of objects in your current session without using memory, or explicitly loading and removing. The
main downside of this approach is the that data must be loaded from disk each time, with the
corresponding (if generally negligible) overhead of file access.

Note

This function is new, and all aspects may change in the near future.

Author(s)

Jeffrey A. Ryan

References

Luke’s stuff and Mark Brevington and Roger Peng

See Also

delayedAssign, makeActiveBinding

Examples

Not run:
attachSymbols()
SBUX
QQQ
ls()

End(Not run)

buildData Create Data Object for Modelling

Description

Create one data object from multiple sources, applying transformations via standard R formula
mechanism.

Usage

buildData(formula, na.rm = TRUE, return.class = "zoo")

20 buildData

Arguments

formula an object of class formula (or one that can be coerced to that class): a sym-
bolic description of the desired output data object, with the dependent side
corresponding to first column, and the independent parameters of the formula
assigned to the remaining columns.

na.rm drop rows with missing values?

return.class one of "zoo","data.frame","ts","timeSeries"

Details

Makes available for use outside the quantmod workflow a dataset of appropriately transformed
variables, using the same mechanism underlying specifyModel. Offers the ability to apply trans-
formations to raw data using a common formula mechanism, without having to explicitly merge
different data objects.

Interally calls specifyModel followed by modelData, with the returned object being coerced to the
desired ’return.class’ if possible, otherwise returns a zoo object.

See getSymbols and specifyModel for more information regarding proper usage.

Value

An object of class return.class.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, specifyModel, modelData

Examples

Not run:
buildData(Next(OpCl(DIA)) ~ Lag(TBILL) + I(Lag(OpHi(DIA))^2))
buildData(Next(OpCl(DIA)) ~ Lag(TBILL), na.rm=FALSE)
buildData(Next(OpCl(DIA)) ~ Lag(TBILL), na.rm=FALSE, return.class="ts")

End(Not run)

buildModel 21

buildModel Build quantmod model given specified fitting method

Description

Construct and attach a fitted model of type method to quantmod object.

Usage

buildModel(x, method, training.per, ...)

Arguments

x An object of class quantmod created with specifyModel or an R formula

training.per character vector representing dates in ISO 8601 format “CCYY-MM-DD” or
“CCYY-MM-DD HH:MM:SS” of length 2

method A character string naming the fitting method. See details section for available
methods, and how to create new methods.

... Additional arguments to method call

Details

Currently available methods include:

lm, glm, loess, step, ppr, rpart[rpart], tree[tree], randomForest[randomForest], mars[mda], poly-
mars[polspline], lars[lars], rq[quantreg], lqs[MASS], rlm[MASS], svm[e1071], and nnet[nnet].

The training.per should match the undelying date format of the time-series data used in mod-
elling. Any other style may not return what you expect.

Additional methods wrappers can be created to allow for modelling using custom functions. The
only requirements are for a wrapper function to be constructed taking parameters quantmod, training.data,
and The function must return the fitted model object and have a predict method available. It
is possible to add predict methods if non exist by adding an S3 method for predictModel. The
buildModel.skeleton function can be used for new methods.

Value

An object of class quantmod with fitted model attached

Note

See buildModel.skeleton for information on adding additional methods

Author(s)

Jeffrey Ryan

22 chartSeries

See Also

specifyModel tradeModel

Examples

Not run:
getSymbols('QQQ',src='yahoo')
q.model = specifyModel(Next(OpCl(QQQ)) ~ Lag(OpHi(QQQ),0:3))
buildModel(q.model,method='lm',training.per=c('2006-08-01','2006-09-30'))

End(Not run)

chartSeries Create Financial Charts

Description

Charting tool to create standard financial charts given a time series like object. Serves as the base
function for future technical analysis additions. Possible chart styles include candles, matches (1
pixel candles), bars, and lines. Chart may have white or black background.

reChart allows for dynamic changes to the chart without having to respecify the full chart param-
eters.

Usage

chartSeries(x,
type = c("auto", "candlesticks", "matchsticks", "bars","line"),
subset = NULL,
show.grid = TRUE,
name = NULL,
time.scale = NULL,
log.scale = FALSE,
TA = 'addVo()',
TAsep=';',
line.type = "l",
bar.type = "ohlc",
theme = chartTheme("black"),
layout = NA,
major.ticks='auto', minor.ticks=TRUE,
yrange=NULL,
plot=TRUE,
up.col,dn.col,color.vol = TRUE, multi.col = FALSE,
...)

reChart(type = c("auto", "candlesticks", "matchsticks", "bars","line"),
subset = NULL,
show.grid = TRUE,

chartSeries 23

name = NULL,
time.scale = NULL,
line.type = "l",
bar.type = "ohlc",
theme = chartTheme("black"),
major.ticks='auto', minor.ticks=TRUE,
yrange=NULL,
up.col,dn.col,color.vol = TRUE, multi.col = FALSE,
...)

Arguments

x an OHLC object - see details

type style of chart to draw

subset xts style date subsetting argument

show.grid display price grid lines?

name name of chart

time.scale what is the timescale? automatically deduced (broken)

log.scale should the y-axis be log-scaled?

TA a vector of technical indicators and params, or character strings

TAsep TA delimiter for TA strings

line.type type of line in line chart

bar.type type of barchart - ohlc or hlc

theme a chart.theme object

layout if NULL bypass internal layout

major.ticks where should major ticks be drawn

minor.ticks should minor ticks be draw?

yrange override y-scale

plot should plot be drawn

up.col up bar/candle color

dn.col down bar/candle color

color.vol color code volume?

multi.col 4 color candle pattern

... additional parameters

Details

Currently displays standard style OHLC charts familiar in financial applications, or line charts when
not passes OHLC data. Works with objects having explicit time-series properties.

Line charts are created with close data, or from single column time series.

The subset argument can be used to specify a particular area of the series to view. The underlying
series is left intact to allow for TA functions to use the full data set. Additionally, it is possible to
use syntax borrowed from the first and last functions, e.g. ‘last 4 months’.

24 chartSeries

TA allows for the inclusion of a variety of chart overlays and tecnical indicators. A full list is
available from addTA. The default TA argument is addVo() - which adds volume, if available, to
the chart being drawn.

theme requires an object of class chart.theme, created by a call to chartTheme. This function can
be used to modify the look of the resulting chart. See chart.theme for details.

line.type and bar.type allow further fine tuning of chart styles to user tastes.

multi.col implements a color coding scheme used in some charting applications, and follows the
following rules:

• grey => Op[t] < Cl[t] and Op[t] < Cl[t-1]

• white => Op[t] < Cl[t] and Op[t] > Cl[t-1]

• red => Op[t] > Cl[t] and Op[t] < Cl[t-1]

• black => Op[t] > Cl[t] and Op[t] > Cl[t-1]

reChart takes any number of arguments from the original chart call — and redraws the chart with
the updated parameters. One item of note: if multiple color bars/candles are desired, it is necessary
to respecify the theme argument. Additionally it is not possible to change TA parameters at present.
This must be done with addTA/dropTA/swapTA/moveTA commands.

Value

Returns a standard chart plus volume, if available, suitably scaled.

If plot=FALSE a chob object will be returned.

Note

Most details can be fine-tuned within the function, though the code does a reasonable job of scaling
and labelling axes for the user.

The current implementation maintains a record of actions carried out for any particular chart. This
is used to recreate the original when adding new indicator. A list of applied TA actions is available
with a call to listTA. This list can be assigned to a variable and used in new chart calls to recreate
a set of technical indicators. It is also possible to force all future charts to use the same indicators
by calling setTA.

Additional motivation to add outlined candles to allow for scaling and advanced color coding is
owed to Josh Ulrich, as are the base functions (from TTR) for the yet to be released technical
analysis charting code.

Many improvements in the current version were the result of conversations with Gabor Grothendieck.
Many thanks to him.

Author(s)

Jeffrey A. Ryan

References

Josh Ulrich - TTR package and multi.col coding

chartTheme 25

See Also

getSymbols, addTA, setTA, chartTheme

Examples

Not run:
getSymbols("YHOO")
chartSeries(YHOO)
chartSeries(YHOO, subset='last 4 months')
chartSeries(YHOO, subset='2007::2008-01')
chartSeries(YHOO,theme=chartTheme('white'))
chartSeries(YHOO,TA=NULL) #no volume
chartSeries(YHOO,TA=c(addVo(),addBBands())) #add volume and Bollinger Bands from TTR

addMACD() # add MACD indicator to current chart

setTA()
chartSeries(YHOO) #draws chart again, this time will all indicators present

End(Not run)

chartTheme Create A Chart Theme

Description

Create a chart.theme object for use within chartSeries to manage desired chart colors.

Usage

chartTheme(theme = "black", ...)

Arguments

theme name of base theme

... name=value pairs to modify

Details

Used as an argument to the chartSeries family of functions, chartTheme allows for on-the-fly mod-
ification of pre-specified chart ‘themes’. Users can modify a pre-built theme in-place, or copy the
theme to a new variable for use in subsequent charting calls.

Internally a chart.theme object is nothing more than a list of values organized by chart components.
The primary purpose of this is to facilitate minor modification on the fly, as well as provide a
template for larger changes.

Setting style arguments for TA calls via chartTheme requires the user to pass the styles as name=value
pairs with a name containing the TA call in question. See examples for assistance.

Current components that may be modified with appropriate values:

26 chartTheme

• fg.col: foreground color

• bg.col: background color

• grid.col: grid color

• border: border color

• minor.tick: minor tickmark color

• major.tick: major tickmark color

• up.col: up bar/candle color

• dn.col: down bar/candle color

• up.up.col: up after up bar/candle color

• up.dn.col: up after down bar/candle color

• dn.dn.col: down after down bar/candle color

• dn.up.col: down after up bar/candle color

• up.border: up bar/candle border color

• dn.border: down bar/candle border color

• up.up.border: up after up bar/candle border color

• up.dn.border: up after down bar/candle border color

• dn.dn.border: down after down bar/candle border color

• dn.up.border: down after up bar/candle border color

Value

A chart.theme object

Author(s)

Jeffrey A. Ryan

See Also

chartSeries

Examples

chartTheme()
chartTheme('white')
chartTheme('white',up.col='blue',dn.col='red')

A TA example
chartTheme(addRSI.col='red')

str(chartTheme())

chart_Series 27

chart_Series Experimental Charting Version 2

Description

These are experimental functions for a new version of chartSeries in quantmod. Interface, behavior,
and functionality will change.

Usage

chart_Series(x,
name = NULL,
type = "candlesticks",
subset = "",
TA = "",
pars = chart_pars(),
theme = chart_theme(),
clev = 0,
...)

Arguments

x time series object
name name for chart
type one of:
subset an ISO8601 style character string indicating date range
TA a character string of semi-colon seperated TA calls.
pars chart parameters
theme chart theme
clev color level (experimental). Indicates the degree of brightness 0 is darkest color.
... additional parameters

Details

These functions, when complete, will revert back to the original chartSeries naming convention.

Value

Called for graphical side effects.

Note

Highly experimental (read: alpha) use with caution.

Author(s)

Jeffrey A. Ryan

28 chob-class

chob-class A Chart Object Class

Description

Internal Objects for Tracking and Plotting Chart Changes

Objects from the Class

Objects are created internally through the charting functions chartSeries, barChart, lineChart,
and candleChart.

Slots

device: Object of class "ANY" ~~
call: Object of class "call" ~~
xdata: Object of class "ANY" ~~
xsubset: Object of class "ANY" ~~
name: Object of class "character" ~~
type: Object of class "character" ~~
passed.args: Object of class "ANY" ~~
windows: Object of class "numeric" ~~
xrange: Object of class "numeric" ~~
yrange: Object of class "numeric" ~~
log.scale: Object of class "logical" ~~
length: Object of class "numeric" ~~
color.vol: Object of class "logical" ~~
multi.col: Object of class "logical" ~~
show.vol: Object of class "logical" ~~
show.grid: Object of class "logical" ~~
line.type: Object of class "character" ~~
bar.type: Object of class "character" ~~
xlab: Object of class "character" ~~
ylab: Object of class "character" ~~
spacing: Object of class "numeric" ~~
width: Object of class "numeric" ~~
bp: Object of class "numeric" ~~
x.labels: Object of class "character" ~~
colors: Object of class "ANY" ~~
layout: Object of class "ANY" ~~
time.scale: Object of class "ANY" ~~
major.ticks: Object of class "ANY" ~~
minor.ticks: Object of class "logical" ~~

chobTA-class 29

Methods

No methods defined with class "chob" in the signature.

Author(s)

Jeffrey A. Ryan

See Also

chartSeries, or chobTA for links to other classes

Examples

showClass("chob")

chobTA-class A Technical Analysis Chart Object

Description

Internal storage class for handling arbitrary TA objects

Objects from the Class

Objects of class chobTA are created and returned invisibly through calls to addTA-style functions.

Slots

call: Object of class "call" ~~

on: Object of class "ANY" ~~

new: Object of class "logical" ~~

TA.values: Object of class "ANY" ~~

name: Object of class "character" ~~

params: Object of class "ANY" ~~

Methods

show signature(object = "chobTA"): ...

Note

It is of no external vaule to handle chobTA objects directly

Author(s)

Jeffrey A. Ryan

30 create.binding

See Also

addTA, ~~~ or chob for links to other classes

Examples

showClass("chobTA")

create.binding Create DDB Bindings

Description

Internal function used in attachSymbols to create active bindings for symbols defined in a DDB
object.

Usage

create.binding(s,
lsym,
rsym,
gsrc,
mem.cache = TRUE,
file.cache = !mem.cache,
cache.dir = tempdir(),
envir,...)

Arguments

s symbol name

lsym function to convert to local name (legal R name)

rsym function to convert to remote name (source name)

gsrc corresponds to ’src’ arg in getSymbols call

mem.cache cache to memory

file.cache cache to disk

cache.dir directory to cache to/from

envir environment name (character)

... arguments to pass to getSymbols call

Details

Low level function to create bindings during initial demand-database construction.

Value

Called for its side effect of creating active bindings to symbols.

Defaults 31

Note

This is code used internally by attachSymbols. User’s may modify this to accomodate different
systems. The upstream functions needn’t maintain consistency with this interface.

Use as a guide or template.

Author(s)

Jeffrey A. Ryan

References

Mark, Roger, ?

Defaults Manage Default Argument Values for quantmod Functions

Description

Use globally specified defaults, if set, in place of formally specified default argument values. Allows
user to specify function defaults different than formally supplied values, e.g. to change poorly
performing defaults, or satisfy a different preference.

Usage

setDefaults(name, ...)
unsetDefaults(name, confirm = TRUE)
getDefaults(name = NULL, arg = NULL)
importDefaults(calling.fun)

Arguments

name name of function, quoted or unquoted (see Details)

... name=value default pairs

confirm prompt before unsetting defaults

arg values to retrieve

calling.fun name of function to act upon

Details

setDefaults Provides a wrapper to R options that allows the user to specify any name=value pair
for a function’s formal arguments. Only formal name=value pairs specified will be updated.
Values do not have to be respecified in subsequent calls to setDefaults, so it is possible to
add new defaults for each function one at a time, without having to retype all previous values.
Assigning NULL to any argument will remove the argument from the defaults list.
name can be an unquoted, bare symbol only at the top-level. It must be a quoted character
string if you call setDefaults inside a function.

32 Defaults

unsetDefaults Removes name=value pairs from the defaults list.

getDefaults Provides access to the stored user defaults. Single arguments need not be quoted,
multiple arguments must be in a character vector.

importDefaults A call to importDefaults should be placed on the first line in the body of the
function. It checks the user’s environment for globally specified default values for the called
function. These defaults can be specified by the user with a call to setDefaults, and will
override any default formal parameters, in effect replacing the original defaults with user
supplied values instead. Any user-specified values in the parent function (that is, the function
containing importDefaults) will override the values set in the global default environment.

Value

setDefaults None. Used for it’s side effect of setting a list of default arguments by function.

unsetDefaults None. Used for it’s side effect of unsetting default arguments by function.

getDefaults A named list of defaults and associated values, similar to formals, but only re-
turning values set by setDefaults for the name function. Calling getDefaults()
(without arguments) returns in a character vector of all functions currently hav-
ing defaults set (by setDefaults).
This does not imply that the returned function names are able to accept defaults
(via importDefaults), rather that they have been set to store user defaults. All
values can also be viewed with a call to getOption(name_of_function.Default).

importDefaults None. Used for its side-effect of loading all non-NULL user- specified default
values into the current function’s environment, effectively changing the default
values passed in the parent function call. Like formally defined defaults in the
function definition, default values set by importDefaults take lower prece-
dence than arguments specified by the user in the function call.

Note

setDefaults At present it is not possible to specify NULL as a replacement for a non-NULL default,
as the process interprets NULL values as being not set, and will simply use the value specified
formally in the function. If NULL is what is desired, it is necessary to include this in the
function call itself.
Any arguments included in the actual function call will take precedence over setDefaults
values, as well as the standard formal function values. This conforms to the current user
experience in R.
Like options, default settings are not kept across sessions. Currently, it is not possible to pass
values for . . . arguments, only formally specified arguments in the original function definition.

unsetDefaults unsetDefaults removes the all entries from the options lists for the specified
function. To remove single function default values simply set the name of the argument to
NULL in setDefaults.

importDefaults When a function implements importDefaults, non-named arguments may be
ignored if a global default has been set (i.e. not NULL). If this is the case, simply name the
arguments in the calling function.
This should also work for functions retrieving formal parameter values from options, as it
assigns a value to the parameter in a way that looks like it was passed in the function call. So

Delt 33

any check on options would presumably disregard importDefaults values if an argument
was passed to the function.

Author(s)

Jeffrey A. Ryan

See Also

options

Examples

my.fun <- function(x=3)
{

importDefaults('my.fun')
x^2

}

my.fun() # returns 9

setDefaults(my.fun, x=10)
my.fun() # returns 100
my.fun(x=4) # returns 16

getDefaults(my.fun)
formals(my.fun)
unsetDefaults(my.fun, confirm=FALSE)
getDefaults(my.fun)

my.fun() # returns 9

Delt Calculate Percent Change

Description

Calculate the k-period percent difference within one series, or between two series. Primarily used to
calculate the percent change from one period to another of a given series, or to calculate the percent
difference between two series over the full series.

Usage

Delt(x1, x2 = NULL, k = 0, type = c("arithmetic", "log"))

34 Delt

Arguments

x1 m x 1 vector

x2 m x 1 vector

k change over k-periods. default k=1 when x2 is NULL.

type type of difference. log or arithmetic (default).

Details

When called with only x1, the one period percent change of the series is returned by default. Inter-
nally this happens by copying x1 to x2. A two period difference would be specified with k=2.

If called with both x1 and x2, the difference between the two is returned. That is, k=0. A one period
difference would be specified by k=1. k may also be a vector to calculate more than one period at a
time. The results will then be an m x length(k)

Arithmetic differences are used by default: Lag = (x2(t) - x1(t-k))/x1(t-k)

Log differences are calculated: Lag = log(x2(t)/x1(t-k))

Value

An matrix of length(x1) rows and length(k) columns.

Author(s)

Jeffrey A. Ryan

See Also

OpOp OpCl

Examples

Stock.Open <- c(102.25,102.87,102.25,100.87,103.44,103.87,103.00)
Stock.Close <- c(102.12,102.62,100.12,103.00,103.87,103.12,105.12)

Delt(Stock.Open) #one period pct. price change
Delt(Stock.Open,k=1) #same
Delt(Stock.Open,type='arithmetic') #using arithmetic differences (default)
Delt(Stock.Open,type='log') #using log differences

Delt(Stock.Open,Stock.Close) #Open to Close pct. change
Delt(Stock.Open,Stock.Close,k=0:2) #...for 0,1, and 2 periods

findPeaks 35

findPeaks Find Peaks and Valleys In A Series

Description

Functions to find the peaks (tops) and valleys (bottoms) of a given series.

Usage

findPeaks(x, thresh=0)
findValleys(x, thresh=0)

Arguments

x a time series or vector

thresh minimum peak/valley threshold

Value

A vector of integers corresponding to peaks/valleys.

As a peak[valley] is defined as the highest[lowest] value in a series, the function can only define it
after a change in direction has occurred. This means that the function will always return the first
period after the peak/valley of the data, so as not to accidentally induce a look-ahead bias.

Author(s)

Jeffrey A. Ryan

Examples

findPeaks(sin(1:10))

p <- findPeaks(sin(seq(1,10,.1)))
sin(seq(1,10,.1))[p]

plot(sin(seq(1,10,.1))[p])
plot(sin(seq(1,10,.1)),type='l')
points(p,sin(seq(1,10,.1))[p])

36 fittedModel

fittedModel quantmod Fitted Objects

Description

Extract and replace fitted models from quantmod objects built with buildModel. All objects fitted
through methods specified in buildModel calls can be extracted for further analysis.

Usage

fittedModel(object)

S3 method for class 'quantmod'
formula(x, ...)

S3 method for class 'quantmod'
plot(x, ...)

S3 method for class 'quantmod'
coefficients(object, ...)

S3 method for class 'quantmod'
coef(object, ...)

S3 method for class 'quantmod'
residuals(object, ...)

S3 method for class 'quantmod'
resid(object, ...)

S3 method for class 'quantmod'
fitted.values(object, ...)

S3 method for class 'quantmod'
fitted(object, ...)

S3 method for class 'quantmod'
anova(object, ...)

S3 method for class 'quantmod'
logLik(object, ...)

S3 method for class 'quantmod'
vcov(object, ...)

fittedModel 37

Arguments

object a quantmod object

x a suitable object

... additional arguments

Details

Most often used to extract the final fitted object of the modelling process, usually for further analysis
with tools outside the quantmod package.

Most common methods to apply to fitted objects are available to the parent quantmod object. At
present, one can call directly the following S3 methods on a built model as if calling directly on the
fitted object. See *Usage* section.

It is also possible to add a fitted model to an object. This may be of value when applying heuristic
rule sets for trading approaches, or when fine tuning already fit models by hand.

Value

Returns an object matching that returned by a call to the method specified in buildModel.

Note

The replacement function fittedModel<- is highly experimental, and may or may not continue
into further releases.

The fitted model added must use the same names as appear in the quantmod object’s dataset.

Author(s)

Jeffrey A. Ryan

See Also

quantmod,buildModel

Examples

Not run:
x <- specifyModel(Next(OpCl(DIA)) ~ OpCl(VIX))
x.lm <- buildModel(x,method='lm',training.per=c('2001-01-01','2001-04-01'))

fittedModel(x.lm)

coef(fittedModel(x.lm))
coef(x.lm) # same

vcov(fittedModel(x.lm))
vcov(x.lm) # same

End(Not run)

38 getDividends

getDividends Load Financial Dividend Data

Description

Download, or download and append stock dividend data from Yahoo! Finance.

Usage

getDividends(Symbol,
from = "1970-01-01",
to = Sys.Date(),
env = parent.frame(),
src = "yahoo",
auto.assign = FALSE,
auto.update = FALSE,
verbose = FALSE,
split.adjust = TRUE,
...,
curl.options = list())

Arguments

Symbol The Yahoo! stock symbol

from date from in CCYY-MM-DD format

to date to in CCYY-MM-DD format

env where to create object

src data source (only yahoo is valid at present)

auto.assign should results be loaded to env

auto.update automatically add dividend to data object

verbose display status of retrieval

split.adjust adjust dividends for splits (TRUE by default because that’s what Yahoo returns)

... currently unused

curl.options options passed to curl::curl

Details

Eventually destined to be a wrapper function along the lines of getSymbols to different sources -
this currently only support Yahoo data.

getFinancials 39

Value

If auto.assign is TRUE, the symbol will be written to the environment specified in env with a .div
appended to the name.

If auto.update is TRUE and the object is of class xts, the dividends will be included as an attribute
of the original object and be reassigned to the environment specified by env.

All other cases will return the dividend data as an xts object.

Note

This function is very preliminary - and will most likely change significantly in the future.

Author(s)

Jeffrey A. Ryan

References

Yahoo! Finance: https://finance.yahoo.com

See Also

getSymbols

Examples

Not run:
getSymbols("MSFT")
getDividends("MSFT")

getDividends(MSFT)

End(Not run)

getFinancials Download and View Financial Statements

Description

Download Income Statement, Balance Sheet, and Cash Flow Statements.

Usage

getFinancials(Symbol, env = parent.frame(), src = "google",
auto.assign = TRUE,
...)

viewFinancials(x, type=c('BS','IS','CF'), period=c('A','Q'),
subset = NULL)

https://finance.yahoo.com

40 getFinancials

Arguments

Symbol one or more valid google symbol, as a character vector or semi-colon delimited
string

env where to create the object

src currently no sources are implemented

auto.assign should results be loaded to the environment

... currently unused

x an object of class financials

type type of statement to view

period period of statement to view

subset ‘xts’ style subset string

Details

A utility to download financial statements for publicly traded companies.

Individual statements can be accessed using standard R list extraction tools, or by using viewFinancials.

viewFinancials allows for the use of date subsetting as available in the xts package, as well as the
specification of the type of statement to view. BS for balance sheet, IS for income statement, and
CF for cash flow statement. The period argument is used to identify which statements to view - (A)
for annual and (Q) for quarterly.

Value

Six individual matrices organized in a list of class ‘financials’:

IS a list containing (Q)uarterly and (A)nnual Income Statements

BS a list containing (Q)uarterly and (A)nnual Balance Sheets

CF a list containing (Q)uarterly and (A)nnual Cash Flow Statements

Note

As with all free data, you may be getting exactly what you pay for. Sometimes that may be abso-
lutely nothing.

Author(s)

Jeffrey A. Ryan

Examples

Not run:
getFinancials('JAVA') # returns JAVA.f to "env"
getFin('AAPL') # returns AAPL.f to "env"

viewFin(JAVA.f, "IS", "Q") # Quarterly Income Statement
viewFin(AAPL.f, "CF", "A") # Annual Cash Flows

getFX 41

str(AAPL.f)

End(Not run)

getFX Download Exchange Rates

Description

Download exchange rates or metals prices from oanda.

Usage

getFX(Currencies,
from = Sys.Date() - 179,
to = Sys.Date(),
env = parent.frame(),
verbose = FALSE,
warning = TRUE,
auto.assign = TRUE, ...)

Arguments

Currencies Currency pairs expressed as ‘CUR/CUR’

from start date expressed in ISO CCYY-MM-DD format

to end date expressed in ISO CCYY-MM-DD format

env which environment should they be loaded into

verbose be verbose

warning show warnings

auto.assign use auto.assign

... additional parameters to be passed to getSymbols.oanda method

Details

A convenience wrapper to getSymbols(x,src='oanda'). See getSymbols and getSymbls.oanda
for more detail.

Value

Data will be assigned automatically to the environment specified (the parent environment by de-
fault). If auto.assign = FALSE, the data from a single metal request will simply be returned from
the function call.

If auto.assign = TRUE is used (the default) a vector of downloaded symbol names will be returned.

See getSymbols and getSymbols.oanda for more detail.

42 getMetals

Author(s)

Jeffrey A. Ryan

References

Oanda.com https://www.oanda.com

See Also

getSymbols, getSymbols.oanda

Examples

Not run:

getFX("USD/JPY")

getFX("EUR/USD",from="2005-01-01")

End(Not run)

getMetals Download Daily Metals Prices

Description

Download daily metals prices from oanda.

Usage

getMetals(Metals,
from = Sys.Date() - 179,
to = Sys.Date(),
base.currency="USD",
env = parent.frame(),
verbose = FALSE,
warning = TRUE,
auto.assign = TRUE, ...)

Arguments

Metals metals expressed in common name or symbol form

from start date expressed in ISO CCYY-MM-DD format

to end date expressed in ISO CCYY-MM-DD format

base.currency which currency should the price be in

env which environment should they be loaded into

https://www.oanda.com

getMetals 43

verbose be verbose

warning show warnings

auto.assign use auto.assign

... additional parameters to be passed to getSymbols.oanda method

Details

A convenience wrapper to getSymbols(x,src='oanda').

The most useful aspect of getMetals is the ability to specify the Metals in terms of underlying 3
character symbol or by name (e.g. XAU (gold) , XAG (silver), XPD (palladium), or XPT (plat-
inum)).

There are unique aspects of any continuously traded commodity, and it is recommended that the
user visit https://www.oanda.com for details on specific pricing issues.

See getSymbols and getSymbls.oanda for more detail.

Value

Data will be assigned automatically to the environment specified (the parent environment by de-
fault). If auto.assign = FALSE, the data from a single metal request will simply be returned from
the function call.

If auto.assign = TRUE is used (the default) a vector of downloaded symbol names will be returned.

See getSymbols and getSymbols.oanda for more detail.

Author(s)

Jeffrey A. Ryan

References

Oanda.com https://www.oanda.com

See Also

getSymbols, getSymbols.oanda

Examples

Not run:

getMetals(c("gold","XPD"))

getMetals("plat",from="2005-01-01")

End(Not run)

https://www.oanda.com
https://www.oanda.com

44 getModelData

getModelData Update model’s dataset

Description

Update currently specified or built model with most recent data.

Usage

getModelData(x, na.rm = TRUE)

Arguments

x An object of class quantmod

na.rm Boolean. Remove NA values. Defaults to TRUE

Details

Primarily used within specify model calls, getModelData is used to retrieve the appropriate un-
derlying variables, and apply model specified transformations automatically. It can be used to also
update a current model in memory with the most recent data.

Value

Returns object of class quantmod.OHLC

Author(s)

Jeffrey Ryan

See Also

getSymbols load data specifyModel create model structure buildModel construct model modelData
extract model dataset

Examples

Not run:
my.model <- specifyModel(Next(OpCl(QQQ)) ~ Lag(Cl(NDX),0:5))
getModelData(my.model)

End(Not run)

getOptionChain 45

getOptionChain Download Option Chains

Description

Function to download option chain data from data providers.

Usage

getOptionChain(Symbols, Exp = NULL, src="yahoo", ...)

Arguments

Symbols The name of the underlying symbol. Source ‘yahoo’ only allows for a single
ticker while source ‘orats’ can return multiple tickers.

Exp One or more expiration dates, NULL, or an ISO-8601 style string. If Exp is
missing, only the front month contract will be returned.

src Source of data. One of ‘yahoo’ or ‘orats’ with a default of ‘yahoo’.

... Additional parameters.

Details

This function is a wrapper to data-provider specific APIs. By default the data is sourced from yahoo.

Value

A named list containing two data.frames, one for calls and one for puts. If more than one expiration
was requested, this two-element list will be contained within list of length length(Exp). Each
element of this list will be named with the expiration month, day, and year (for Yahoo sourced
data).

If Exp is set to NULL, all expirations will be returned. Not explicitly setting will only return the front
month.

Author(s)

Jeffrey A. Ryan, Joshua M. Ulrich, Steve Bronder

References

https://finance.yahoo.com, https://docs.orats.io/datav2-api-guide/data.html#strikes

See Also

getOptionChain.orats

https://finance.yahoo.com
https://docs.orats.io/datav2-api-guide/data.html#strikes

46 getOptionChain.orats

Examples

Not run:
Only the front-month expiry
AAPL.OPT <- getOptionChain("AAPL")
All expiries
AAPL.OPTS <- getOptionChain("AAPL", NULL)
All 2015 and 2016 expiries
AAPL.2015 <- getOptionChain("AAPL", "2015/2016")
Using orats backend
NFLX.AAPL.2021 <- getOptionChain(c("NFLX", "AAPL"), "2021", src = "orats",

api.key = Sys.getenv("ORATS_API_KEY"))

End(Not run)

getOptionChain.orats Download Option Chain Data from orats

Description

Function to download option chain data from orats.

Usage

getOptionChain.orats(Symbols, Exp, api.key, dte, delta)

Arguments

Symbols The name of the underlying symbol. Source ‘yahoo’ only allows for a single
ticker while source ‘orats’ can return multiple tickers.

Exp One or more expiration dates, NULL, or an ISO-8601 style string. If Exp is
missing, only the front month contract will be returned.

api.key A character vector for the key given with an account for accessing the orats API.
If missing, the function will look for an environment variable ORATS_API_KEY
containing the API key.

dte A vector of two integers giving a range of expiry dates to subset the results by.

delta A vector of two integers giving a range deltas to subset the results by.

Details

This function is a wrapper to data-provider specific APIs. By default the data is sourced from yahoo.

getQuote 47

Value

For orats, returns A named list containing five data.frames, one each for calls and puts that follows a
similar form to the return from yahoo, but does not have a Last price and instead has a Ticker column
for multiple ticker requests. The *_extra data.frames contain additional information from the ‘orats’
API end point whose definitions are available at the URL in the references. If more than one
expiration was requested, The results will be returned as a list within list of length length(Exp).
Each element of this list will be named with the expiration month, day, and year (%b.%d.%Y).

If Exp is set to NULL, all expirations will be returned. Not explicitly setting will only return the front
month.

Author(s)

Steve Bronder

References

https://docs.orats.io/datav2-api-guide/data.html#strikes

Examples

Not run:
Only the front-month expiry
AAPL.OPT <- getOptionChain("AAPL",

api.key = Sys.getenv("ORATS_API_KEY"))
All expiries
AAPL.OPTS <- getOptionChain("AAPL", NULL,

api.key = Sys.getenv("ORATS_API_KEY"))
All 2015 and 2016 expiries
AAPL.2015 <- getOptionChain("AAPL", "2015/2016",

api.key = Sys.getenv("ORATS_API_KEY"))

End(Not run)

getQuote Download Current Stock Quote

Description

Fetch current stock quote(s) from specified source. At present this only handles sourcing quotes
from Yahoo Finance and Alpha Vantage, but it can be extended to additional sources.

Usage

getQuote(Symbols, src = "yahoo", what, ...)

standardQuote(src="yahoo")
yahooQF(names)
yahooQuote.EOD

https://docs.orats.io/datav2-api-guide/data.html#strikes

48 getQuote

Arguments

Symbols character string of symbols, separated by semi-colons

src source of data ("yahoo" and "av" are currently implemented)

what what should be retrieved

names which data should be retrieved

... currently unused

Value

The number of symbols per request is limited to 200 for Yahoo! and 100 for Alpha Vantage.
getQuote will make multiple requests if more than the maximum number of symbols are requested.
It will then combine the results of all the requests and return one data frame. The data frame will
contain a column for each requested data field, and the requested symbols will be stored in the row
names.

In order to import quotes from Alpha Vantage, you must obtain an API key by completing a
free, one-time registration at their website: https://www.alphavantage.co/. Then you can call
getQuote with src = "av" and api.key = "[your key]".

The what argument allows for specific data to be requested. For getQuote.yahoo, the value of
what should be a quoteFormat object like that returned by standardQuote. The yahooQF function
will create an interactive selection tool if the what argument is missing. The what argument is
currently ignored for Alpha Vantage data because only a few fields are available.

standardQuote currently only applies to the Yahoo! data source. It returns a quoteFormat object
to use with the getQuote function.

yahooQuote.EOD is a constant quoteFormat object for OHLCV data.

Author(s)

Jeffrey A. Ryan (Yahoo) Ethan B. Smith (Alpha Vantage)

References

Yahoo! Finance https://finance.yahoo.com Alpha Vantage https://www.alphavantage.co

See Also

getSymbols, getSymbols.av

Examples

yahooQuote.EOD
Not run:
getQuote("AAPL")
getQuote("QQQ;SPY;^VXN",what=yahooQF(c("Bid","Ask")))
standardQuote()
yahooQF()

End(Not run)

https://www.alphavantage.co/
https://finance.yahoo.com
https://www.alphavantage.co

getSplits 49

getSplits Load Financial Split Data

Description

Download, or download and append stock split data from Yahoo! Finance.

Usage

getSplits(Symbol,
from = "1970-01-01",
to = Sys.Date(),
env = parent.frame(),
src = "yahoo",
auto.assign = FALSE,
auto.update = FALSE,
verbose = FALSE,
...,
curl.options = list())

Arguments

Symbol The Yahoo! stock symbol

from date from in CCYY-MM-DD format

to date to in CCYY-MM-DD format

env where to create object

src data source (only yahoo is valid at present)

auto.assign should results be loaded to env

auto.update automatically add split to data object

verbose display status of retrieval

... currently unused

curl.options options passed to curl::curl

Details

Eventually destined to be a wrapper function along the lines of getSymbols to different sources -
this currently only support Yahoo data.

Value

If auto.assign is TRUE, the symbol will be written to the environment specified in env with a .div
appended to the name.

If auto.update is TRUE and the object is of class xts, the dividends will be included as an attribute
of the original object and be reassigned to the environment specified by env.

All other cases will return the split data as an xts object. NA is returned if there is no split data.

50 getSymbols

Note

This function is very preliminary - and will most likely change significantly in the future.

Author(s)

Josh Ulrich

References

Yahoo! Finance: https://finance.yahoo.com

See Also

getSymbols, getDividends

Examples

Not run:
getSymbols("MSFT")
getSplits("MSFT")

getSplits(MSFT)

End(Not run)

getSymbols Load and Manage Data from Multiple Sources

Description

Functions to load and manage Symbols in specified environment. Used by specifyModel to retrieve
symbols specified in first step of modelling procedure. Not a true S3 method, but methods for
different data sources follow an S3-like naming convention. Additional methods can be added by
simply adhering to the convention.

Current src methods available are: yahoo, google, MySQL, FRED, csv, RData, oanda, and av.

Data is loaded silently without user assignment by default.

Usage

getSymbols(Symbols = NULL,
env = parent.frame(),
reload.Symbols = FALSE,
verbose = FALSE,
warnings = TRUE,
src = "yahoo",
symbol.lookup = TRUE,
auto.assign = getOption('getSymbols.auto.assign',TRUE),

https://finance.yahoo.com

getSymbols 51

...)

loadSymbols(Symbols = NULL,
env = parent.frame(),
reload.Symbols = FALSE,
verbose = FALSE,
warnings = TRUE,
src = "yahoo",
symbol.lookup = TRUE,
auto.assign = getOption('loadSymbols.auto.assign',TRUE),
...)

showSymbols(env=parent.frame())
removeSymbols(Symbols=NULL,env=parent.frame())
saveSymbols(Symbols = NULL,

file.path=stop("must specify 'file.path'"),
env = parent.frame())

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. Setting env=NULL is equal to auto.assign=FALSE

reload.Symbols boolean to reload current symbols in specified environment. (FALSE)

verbose boolean to turn on status of retrieval. (FALSE)

warnings boolean to turn on warnings. (TRUE)

src character string specifying sourcing method. (yahoo)

symbol.lookup retrieve symbol’s sourcing method from external lookup (TRUE)

auto.assign should results be loaded to env If FALSE, return results instead. As of 0.4-0, this
is the same as setting env=NULL. Defaults to TRUE

file.path character string of file location

... additional parameters

Details

getSymbols is a wrapper to load data from various sources, local or remote. Data is fetched via one
of the available getSymbols methods and either saved in the env specified - the parent.frame()
by default – or returned to the caller. The functionality derives from base::load behavior and
semantics, i.e. is assigned automatically to a variable in the specified environment without the
user explicitly assigning the returned data to a variable. The assigned variable name is that of the
respective Symbols value.

The previous sentence’s point warrants repeating - getSymbols is called for its side effects, and by
defaultdoes not return the data object loaded. The data is ‘loaded’ silently by the function into the
environment specified.

If automatic assignment is not desired, env may be set to NULL, or auto.assign set to FALSE.

The early versions of getSymbols assigned each object into the user’s .GlobalEnv by name (pre 2009
up to versions less than 0.4-0). This behavior is now supported by manually setting env=.GlobalEnv.

52 getSymbols

As of version 0.4-0, the environment is set to parent.frame(), which preserved the user workspace
when called within another scope.

This behavior is expect to change for getSymbols as of 0.5-0, and all results will instead be explicitly
returned to the caller unless a auto.assign is set to TRUE. Many thanks to Kurt Hornik and Achim
Zeileis for suggesting this change, and further thanks to Dirk Eddelbuettel for encouraging the move
to a more functional default by 0.5-0.

Using auto.assign=TRUE, the variable chosen is an R-legal name derived from the symbol being
loaded. It is possible, using setSymbolLookup to specify an alternate name if the default is not
desired. See that function for details.

If auto.assign=FALSE or env=NULL (as of 0.4-0) the data will be returned from the call, and will
require the user to assign the results himself. Note that only one symbol at a time may be requested
when auto assignment is disabled.

Most, if not all, documentation and functionality related to model construction and testing in quant-
mod assumes that auto.assign remains set to TRUE and env is a valid environment object for the
calls related to those functions.

Upon completion a list of loaded symbols is stored in the specified environment under the name
.getSymbols.

Objects loaded by getSymbols with auto.assign=TRUE can be viewed with showSymbols and re-
moved by a call to removeSymbols. Additional data loading “methods” can be created simply
by following the S3-like naming convention where getSymbols.NAME is used for your function
NAME. See getSymbols source code.

setDefaults(getSymbols) can be used to specify defaults for getSymbols arguments. setDefaults(getSymbols.MySQL)
may be used for arguments specific to getSymbols.MySQL, etc.

The “sourcing” of data is managed internally through a complex lookup procedure. If symbol.lookup
is TRUE (the default), a check is made if any symbol has had its source specified by setSymbolLookup.

If not set, the process continues by checking to see if src has been specified by the user in the
function call. If not, any src defined with setDefaults(getSymbols,src=) is used.

Finally, if none of the other source rules apply the default getSymbols src method is used (‘ya-
hoo’).

Value

Called for its side-effect with env set to a valid environment and auto.assign=TRUE, getSymbols
will load into the specified env one object for each Symbol specified, with class defined by return.class.
Presently this may be ts, zoo, xts, or timeSeries.

If env=NULL or auto.assign=FALSE an object of type return.class will be returned.

Note

As of version 0.4-0, the default env value is now parent.frame(). In interactive use this should
provide the same functionality as the previous version.

While it is possible to load symbols as classes other than zoo, quantmod requires most, if not all,
data to be of class zoo or inherited from zoo - e.g. xts. The additional methods are meant mainly
to be of use for those using the functionality outside of the quantmod workflow.

getSymbols 53

Author(s)

Jeffrey A. Ryan

See Also

getModelData,specifyModel, setSymbolLookup, getSymbols.csv, getSymbols.RData, getSymbols.oanda,
getSymbols.yahoo, getSymbols.google, getSymbols.FRED, getFX, getMetals,

Examples

Not run:
setSymbolLookup(QQQ='yahoo',SPY='google')

loads QQQ from yahoo (set with setSymbolLookup)
loads SPY from MySQL (set with setSymbolLookup)
getSymbols(c('QQQ','SPY'))

loads Ford market data from yahoo (the formal default)
getSymbols('F')

loads symbol from MySQL database (set with setDefaults)
getSymbols('DIA', verbose=TRUE, src='MySQL')

loads Ford as time series class ts
getSymbols('F',src='yahoo',return.class='ts')

load into a new environment
data.env <- new.env()
getSymbols("YHOO", env=data.env)
ls.str(data.env)

constrain to local scope
try(local({

getSymbols("AAPL") # or getSymbols("AAPL", env=environment())
str(AAPL)
}))

exists("AAPL") # FALSE

assign into an attached environment
attach(NULL, name="DATA.ENV")
getSymbols("AAPL", env=as.environment("DATA.ENV"))
ls("DATA.ENV")
detach("DATA.ENV")

directly return to caller
str(getSymbols("AAPL", env=NULL))
str(getSymbols("AAPL", auto.assign=FALSE)) # same

End(Not run)

54 getSymbols.av

getSymbols.av Download OHLC Data from Alpha Vantage

Description

Downloads historical or realtime equity price data from https://www.alphavantage.co/. Free
registration is required.

Usage

getSymbols.av(Symbols, env, api.key,
return.class = "xts",
periodicity = "daily",
adjusted = FALSE,
interval = "1min",
output.size = "compact",
data.type = "json",
...)

Arguments

Symbols a character vector specifying the names of the symbols to be loaded

env where to create objects (environment)

api.key the API key issued by Alpha Vantage when you registered (character)

return.class class of returned object, see Value (character)

periodicity one of "daily", "weekly", "monthly", or "intraday"

adjusted if TRUE, include a column of closing prices adjusted for dividends and splits

interval one of "1min", "5min", "15min", "30min", or "60min" (intraday data only)

output.size either "compact" or "full"

data.type either "json" or "csv"

... additional parameters as per getSymbols

Details

Meant to be called internally by getSymbols only. This method is not meant to be called directly,
instead a call to getSymbols("x", src="av") will in turn call this method. It is documented for
the sole purpose of highlighting the arguments accepted.

You must register with Alpha Vantage in order to download their data, but the one-time regis-
tration is fast and free. Register at their web site, https://www.alphavantage.co/, and you
will receive an API key: a short string of alphanumeric characters (e.g., "FU4U"). Provide the
API key every time you call getSymbols; or set it globally using setDefaults(getSymbols.av,
api.key="yourKey").

https://www.alphavantage.co/
https://www.alphavantage.co/

getSymbols.av 55

The Alpha Vantage site provides daily, weekly, monthly, and intraday data. Use periodicity to
select one. Note that intraday data will includes today’s data (delayed) if downloaded while the
market is open, which is pretty cool.

Set adjusted=TRUE to include a column of closing prices adjusted for dividends and stock splits
(available only for daily, weekly, and monthly data).

The intraday data is provided as a sequence of OHLC bars. Use the interval argument to deter-
mine the "width" of the bars: 1 minute bars, 5 minutes bars, 15 minutes bars, etc.

By default Alpha Vantage returns the 100 most-recent data points (output.size="compact"). Set
output.size="full" to obtain the entire available history. For daily, weekly, and monthly data,
Alpha Vantage says the available data is up to 20 years; for intraday data, the available history is
the most recent 10 or 15 days. Be forewarned that downloading full data requires more time than
compact data, of course.

Alpha Vantage provides access to data via two APIs. You can choose the API via the data.type
argument. data.type="json", the default, will import data using the JSON API. This API includes
additional metadata (e.g. last updated time, timezone, etc) that is not provided via the CSV API.

Value

A call to getSymbols(Symbols, src="av") will create objects in the specified environment, one
object for each Symbol specified. The object class of the object(s) is determined by return.class.
Presently this may be "ts", "zoo", "xts", or "timeSeries".

Author(s)

Paul Teetor

References

Alpha Vantage documentation available at https://www.alphavantage.co/

See Also

getSymbols, getSymbols.yahoo, getSymbols.google

Examples

Not run:
You'll need the API key given when you registered
getSymbols("IBM", src="av", api.key="yourKey")

The default output.size="compact" returns only the most recent 100 rows.
Set output.size="full" for all available data.
getSymbols("IBM", src="av", api.key="yourKey", output.size="full")

Intraday data is available for the most recent 10 or 15 days
and includes quasi-realtime data (i.e., 20-minute delayed)
getSymbols("IBM", src="av", api.key="yourKey", output.size="full",

periodicity="intraday")

https://www.alphavantage.co/

56 getSymbols.csv

Repeating your API key every time is tedious.
Fortunately, you can set a global default.
setDefaults(getSymbols.av, api.key="yourKey")
getSymbols("IBM", src="av")

End(Not run)

getSymbols.csv Load Data from csv File

Description

Downloads Symbols to specified env from local comma seperated file. This method is not to be
called directly, instead a call to getSymbols(Symbols,src='csv') will in turn call this method. It
is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide
to creating additional getSymbols ‘methods’.

Usage

getSymbols.csv(Symbols,
env,
dir="",
return.class = "xts",
extension="csv",
col.names=c("Open","High","Low","Close","Volume","Adjusted"),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

dir directory of csv file

return.class class of returned object

extension extension of csv file

col.names data column names

... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying R read.csv.

Value

A call to getSymbols.csv will load into the specified environment one object for each Symbol spec-
ified, with class defined by return.class. Presently this may be ts, zoo, xts, or timeSeries.

getSymbols.FRED 57

Note

This has yet to be tested on a windows platform. It should work though file seperators may be an
issue.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, read.csv, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='csv')

Method #2
setDefaults(getSymbols,src='csv')

OR
setSymbolLookup(MSFT='csv')

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.csv('MSFT',verbose=TRUE,env=globalenv())

End(Not run)

getSymbols.FRED Download Federal Reserve Economic Data - FRED(R)

Description

R access to over 11,000 data series accessible via the St. Louis Federal Reserve Bank’s FRED
system.

Downloads Symbols to specified env from ‘research.stlouisfed.org’. This method is not to be called
directly, instead a call to getSymbols(Symbols,src='FRED') will in turn call this method. It is
documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to
creating additional getSymbols ‘methods’.

58 getSymbols.FRED

Usage

getSymbols.FRED(Symbols,
env,
return.class = "xts",
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

return.class class of returned object

... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of many methods for loading data for use with quantmod. Essentially a simple wrapper to the
underlying FRED data download site.

Naming conventions must follow those as seen on the Federal Reserve Bank of St Louis’s website
for FRED. A lookup facility will hopefully be incorporated into quantmod in the near future.

Value

A call to getSymbols.FRED will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, zoo, xts, or timeSeries.

Note

FRED changed its URL scheme for the downloads from http:// to https://. If getSymbols.FRED
fails for this reason, try one of the following solutions:

1. Explicitly pass method via the getSymbols call (or via setDefaults).

2. Install downloader, which may be able to automagically determine a suitable method.

3. Set the download.file.method global option.

Author(s)

Jeffrey A. Ryan

References

St. Louis Fed: Economic Data - FRED https://fred.stlouisfed.org/

See Also

getSymbols, setSymbolLookup

https://fred.stlouisfed.org/

getSymbols.MySQL 59

Examples

Not run:
All 3 getSymbols calls return the same
CPI data to the global environment
The last example is what NOT to do!

Method #1
getSymbols('CPIAUCNS',src='FRED')

Method #2
setDefaults(getSymbols,src='FRED')

OR
setSymbolLookup(CPIAUCNS='FRED')

getSymbols('CPIAUCNS')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.FRED('CPIAUCNS',env=globalenv())

End(Not run)

getSymbols.MySQL Retrieve Data from MySQL Database

Description

Fetch data from MySQL database. As with other methods extending the getSymbols function, this
should NOT be called directly. Its documentation is meant to highlight the formal arguments, as
well as provide a reference for further user contributed data tools.

Usage

getSymbols.MySQL(Symbols,
env,
return.class = 'xts',
db.fields = c("date", "o", "h", "l", "c", "v", "a"),
field.names = NULL,
user = NULL,
password = NULL,
dbname = NULL,
host = "localhost",
port = 3306,
...)

60 getSymbols.MySQL

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

return.class desired class of returned object. Can be xts, zoo, data.frame, or ts. (zoo)

db.fields character vector indicating names of fields to retrieve

field.names names to assign to returned columns

user username to access database

password password to access database

dbname database name

host database host

port database port

... currently not used

Details

Meant to be called internally by getSymbols (see also)

One of a few currently defined methods for loading data for use with quantmod. Its use requires
the packages DBI and MySQL, along with a running MySQL database with tables corresponding
to the Symbol name.

The purpose of this abstraction is to make transparent the ‘source’ of the data, allowing instead the
user to concentrate on the data itself.

Value

A call to getSymbols.MySQL will load into the specified environment one object for each Symbol
specified, with class defined by return.class.

Note

The default configuration needs a table named for the Symbol specified (e.g. MSFT), with column
names date,o,h,l,c,v,a. For table layout changes it is best to use setDefaults(getSymbols.MySQL,...)
with the new db.fields values specified.

Author(s)

Jeffrey A. Ryan

References

MySQL AB https://www.mysql.com

Jeroen Ooms and David James and Saikat DebRoy and Hadley Wickham and Jeffrey Horner
(2019). RMySQL: Database Interface and ’MySQL’ Driver for R. https://CRAN.R-project.
org/package=RMySQL

R-SIG-DB. DBI: R Database Interface

https://www.mysql.com
https://CRAN.R-project.org/package=RMySQL
https://CRAN.R-project.org/package=RMySQL

getSymbols.oanda 61

See Also

getSymbols, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

setDefaults(getSymbols.MySQL,user='jdoe',password='secret',
dbname='tradedata')

Method #1
getSymbols('MSFT',src='MySQL')

Method #2
setDefaults(getSymbols,src='MySQL')

OR
setSymbolLookup(MSFT='MySQL')

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.MySQL('MSFT',env=globalenv())

End(Not run)

getSymbols.oanda Download Currency and Metals Data from Oanda.com

Description

Access to 191 currency and metal prices, downloadable as more that 36000 currency pairs from
Oanda.com.

Downloads Symbols to specified env from https://www.oanda.com historical currency database.
This method is not meant to be called directly, instead a call to getSymbols("x",src="oanda")
will in turn call this method. It is documented for the sole purpose of highlighting the arguments
accepted, and to serve as a guide to creating additional getSymbols ’methods’.

Usage

getSymbols.oanda(Symbols,
env,

https://www.oanda.com

62 getSymbols.oanda

return.class = "xts",
from = Sys.Date() - 179,
to = Sys.Date(),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded - expressed
as a currency pair. (e.g. U.S. Dollar to Euro rate would be expressed as a string
“USD/EUR”. The naming convention follows from Oanda.com, and a table of
possible values is available by calling oanda.currencies

env where to create objects.

return.class class of returned object

from Start of series expressed as "CCYY-MM-DD"

to Start of series expressed as "CCYY-MM-DD"

... additional parameters

Details

Meant to be called internally by getSymbols only.

Oanda data is 7 day daily average price data, that is Monday through Sunday. Oanda only provides
historical data for the past 180 days. getSymbols will return as much data as possible, and warn
when the from date is more than 180 days ago.

Value

A call to getSymbols(Symbols,src="oanda") will load into the specified environment one object for
each ’Symbol’ specified, with class defined by ’return.class’. Presently this may be ’ts’, ’zoo’, ’xts’,
or ’timeSeries’.

Note

Oanda rates are quoted as one unit of base currency to the equivelant amount of foreign currency.

Author(s)

Jeffrey A. Ryan

References

Oanda.com https://www.oanda.com

See Also

Currencies: getSymbols.FRED, getSymbols

https://www.oanda.com

getSymbols.rda 63

Examples

Not run:
getSymbols("USD/EUR",src="oanda")
getSymbols("USD/EUR",src="oanda",from="2005-01-01")

End(Not run)

getSymbols.rda Load Data from R Binary File

Description

Downloads Symbols to specified env from local R data file. This method is not to be called directly,
instead a call to getSymbols(Symbols,src='rda') will in turn call this method. It is documented
for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating
additional getSymbols ‘methods’.

Usage

getSymbols.rda(Symbols,
env,
dir="",
return.class = "xts",
extension="rda",
col.names=c("Open","High","Low","Close","Volume","Adjusted"),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

dir directory of rda/RData file

return.class class of returned object

extension extension of R data file

col.names data column names

... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying R load.

64 getSymbols.SQLite

Value

A call to getSymbols.csv will load into the specified environment one object for each Symbol spec-
ified, with class defined by return.class. Presently this may be ts, zoo, xts, data.frame, or
timeSeries.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, load, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='rda')
getSymbols('MSFT',src='RData')

Method #2
setDefaults(getSymbols,src='rda')

OR
setSymbolLookup(MSFT='rda')

OR
setSymbolLookup(MSFT=list(src='rda'))

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3
getSymbols.rda('MSFT',verbose=TRUE,env=globalenv())

End(Not run)

getSymbols.SQLite Retrieve Data from SQLite Database

Description

Fetch data from SQLite database. As with other methods extending getSymbols this function
should NOT be called directly.

getSymbols.SQLite 65

Usage

getSymbols.SQLite(Symbols,
env,
return.class = 'xts',
db.fields = c("row_names",

"Open",
"High",
"Low",
"Close",
"Volume",
"Adjusted"),

field.names = NULL,
dbname = NULL,
POSIX = TRUE,
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create the objects

return.class desired class of returned object

db.fields character vector naming fields to retrieve

field.names names to assign to returned columns

dbname database name

POSIX are rownames numeric

... additional arguments

Details

Meant to be called internally by getSymbols (see also)

One of a few currently defined methods for loading data for use with ’quantmod’. Its use requires
the packages ’DBI’ and ’RSQLite’, along with a SQLite database.

The purpose of this abstraction is to make transparent the ’source’ of the data, allowing instead the
user to concentrate on the data itself.

Value

A call to getSymbols.SQLite will load into the specified environment one object for each ’Symbol’
specified, with class defined by ’return.class’.

Note

This function is experimental at best, and has not been thoroughly tested. Use with caution, and
please report any bugs to the maintainer of quantmod.

66 getSymbols.tiingo

Author(s)

Jeffrey A. Ryan

References

SQLite https://www.sqlite.org/index.html

David A. James RSQLite: SQLite interface for R
R-SIG-DB. DBI: R Database Interface

See Also

getSymbols

Examples

Not run:
getSymbols("QQQ",src="SQLite")

End(Not run)

getSymbols.tiingo Download OHLC Data from Tiingo

Description

Downloads historical or realtime equity price data from https://www.tiingo.com/. Registration
is required.

Usage

getSymbols.tiingo(Symbols, env, api.key,
return.class="xts",
periodicity="daily",
adjust=FALSE,
from='2007-01-01',
to=Sys.Date(),
...)

Arguments

Symbols a character vector specifying the names of the symbols to be loaded

env where to create objects (environment)

api.key the API key issued by Tiingo when you registered (character)

return.class class of returned object, see Value (character)

periodicity one of "daily", "weekly", "monthly", or "Annually"

adjust adjust for dividends and splits? (FALSE)

https://www.sqlite.org/index.html
https://www.tiingo.com/

getSymbols.tiingo 67

from Retrieve data no earlier than this date. (2007-01-01)

to Retrieve data through this date (Sys.Date())

... additional parameters as per getSymbols

Details

Meant to be called internally by getSymbols only. This method is not meant to be called directly,
instead a call to getSymbols("x", src="tiingo") will in turn call this method. It is documented
for the sole purpose of highlighting the arguments accepted.

You must register with Tiingo in order to download their data. Register at their web site, https:
//www.tiingo.com, and you will receive an API key: a short string of alphanumeric characters
(e.g., "FU4U"). Provide the API key every time you call getSymbols; or set it globally using
setDefaults(getSymbols.tiingo, api.key="yourKey").

Tiingo provides daily, weekly, monthly, and annual data. Use periodicity to select one. This API
accessor will return adjusted or unadjusted OHLC as well as split and dividend information.

For daily, weekly, and monthly data, Tiingo says the available data is up to 30 years;

Value

A call to getSymbols(Symbols, src="tiingo") will create objects in the specified environment,
one object for each Symbol specified. The object class of the object(s) is determined by return.class.
Presently this may be "ts", "zoo", "xts", or "timeSeries".

Author(s)

Steve Bronder

References

Tiingo documentation available at https://www.tiingo.com

See Also

getSymbols, getSymbols.yahoo, getSymbols.av

Examples

Not run:
You'll need the API key given when you registered
getSymbols("IBM", src="tiingo", api.key="yourKey")

Repeating your API key every time is tedious.
Fortunately, you can set a global default.
setDefaults(getSymbols.tiingo, api.key="yourKey")
getSymbols("IBM", src="tiingo")

End(Not run)

https://www.tiingo.com
https://www.tiingo.com
https://www.tiingo.com

68 getSymbols.yahoo

getSymbols.yahoo Download OHLC Data From Yahoo Finance

Description

Downloads Symbols to specified env from ‘finance.yahoo.com’. This method is not to be called
directly, instead a call to getSymbols(Symbols,src='yahoo') will in turn call this method. It is
documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to
creating additional getSymbols ‘methods’.

Usage

getSymbols.yahoo(Symbols,
env,
return.class = 'xts',
index.class = 'Date',
from = "2007-01-01",
to = Sys.Date(),
...,
periodicity = "daily",
curl.options = list())

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

return.class class of returned object

index.class class of returned object index (xts only)

from Retrieve data no earlier than this date. (2007-01-01)

to Retrieve data through this date (Sys.Date())

... additional parameters

periodicity periodicity of data to query and return. Must be one of "daily", "weekly",
"monthly". ("daily")

curl.options options passed to curl::handle_setopt

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying Yahoo! finance site’s historical data download.

getSymbols.yahoo 69

Value

A call to getSymbols.yahoo will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, zoo, xts, or timeSeries.

In the case of xts objects, the indexing will be by Date. This can be altered with the index.class
argument. See indexClass for more information on changing index classes.

Warning

As of quantmod 0.4-9, getSymbols.yahoo has been patched to work with changes to Yahoo Fi-
nance, which also included the following changes to the raw data:

• The adjusted close column appears to no longer include dividend adjustments

• The close column appears to be adjusted for splits twice

• The open, high, and low columns are adjusted for splits, and

• The raw data may contain missing values.

Author(s)

Jeffrey A. Ryan

References

Yahoo Finance: https://finance.yahoo.com

See Also

getSymbols, setSymbolLookup

Examples

Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='yahoo')

Method #2
setDefaults(getSymbols,src='yahoo')

OR
setSymbolLookup(MSFT='yahoo')

getSymbols('MSFT')

###
NOT RECOMMENDED!!!
###
Method #3

https://finance.yahoo.com

70 getSymbols.yahooj

getSymbols.yahoo('MSFT',env=globalenv())

End(Not run)

getSymbols.yahooj Download OHLC Data From Yahoo! Japan Finance

Description

Downloads Symbols to specified env from ‘finance.yahoo.co.jp’. This method is not to be called
directly, instead a call to getSymbols(Symbols,src='yahooj') will in turn call this method. It is
documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to
creating additional getSymbols ‘methods’.

Usage

getSymbols.yahooj(Symbols,
env,
return.class = 'xts',
index.class = 'Date',
from = "2007-01-01",
to = Sys.Date(),
...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded

env where to create objects. (.GlobalEnv)

return.class class of returned object

index.class class of returned object index (xts only)

from Retrieve data no earlier than this date. (2007-01-01)

to Retrieve data through this date (Sys.Date())

... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of the few currently defined methods for loading data for use with quantmod. Essentially a
simple wrapper to the underlying Yahoo! Japan finance site’s historical data download.

The string ‘YJ’ will be prepended to the Symbols because Japanese ticker symbols usually start with
a number and it is cumbersome to use variable names that start with a number in the R environment.

It is recommended to prepend the ticker symbols with ‘YJ’ yourself if you use setSymbolLookup.
That will make it possible for the main getSymbols function to find the symbols in the lookup table.

getSymbols.yahooj 71

Value

A call to getSymbols.yahooj will load into the specified environment one object for each Symbol
specified, with class defined by return.class. Presently this may be ts, zoo, xts, or timeSeries.

In the case of xts objects, the indexing will be by Date. This can be altered with the index.class
argument. See indexClass for more information on changing index classes.

Author(s)

Wouter Thielen

References

Yahoo! Japan Finance: https://finance.yahoo.co.jp

See Also

getSymbols, setSymbolLookup

Examples

Not run:
All 4 getSymbols calls return the same
Sony (6758.T) OHLC to the global environment
The last example is what NOT to do!

Method #1
getSymbols('6758.T',src='yahooj')

Method #2
getSymbols('YJ6758.T',src='yahooj')

Method #3
setDefaults(getSymbols,src='yahooj')

OR
setSymbolLookup(YJ6758.T='yahooj')

getSymbols('YJ6758.T')

###
NOT RECOMMENDED!!!
###
Method #4
getSymbols.yahooj('6758.T',env=globalenv())

End(Not run)

https://finance.yahoo.co.jp

72 has.OHLC

has.OHLC Check For OHLC Data

Description

A set of functions to check for appropriate OHLC and HLC column names within a data object, as
well as the availability and position of those columns.

Usage

is.OHLC(x)
has.OHLC(x, which = FALSE)

is.OHLCV(x)
has.OHLCV(x, which = FALSE)

is.HLC(x)
has.HLC(x, which = FALSE)

is.HL(x)
has.HL(x, which = FALSE)

has.Op(x, which = FALSE)
has.Hi(x, which = FALSE)
has.Lo(x, which = FALSE)
has.Cl(x, which = FALSE)
has.Vo(x, which = FALSE)
has.Ad(x, which = FALSE)

is.BBO(x)
is.TBBO(x)

has.Ask(x, which = FALSE)
has.Bid(x, which = FALSE)
has.Price(x, which = FALSE)
has.Qty(x, which = FALSE)
has.Trade(x, which = FALSE)

Arguments

x data object

which display position of match

Details

Mostly used internally by quantmod, they can be useful for checking whether an object can be
used in OHLC requiring functions like Op, OpCl, etc.

internal-quantmod 73

Columns names must contain the full description of data, that is, Open, High, Low, Close, Volume
or Adjusted. Abbreviations will return FALSE (or NA when which = TRUE). See quantmod.OHLC for
details of quantmod naming conventions.

The "is" functions only return TRUE when the objects has the relevant column names:

• is.HL: High, Low

• is.HLC: High, Low, Close

• is.OHLC: Open, High, Low, Close

The search for relevant column names is not case sensitive. Any additional columns in the object
does not affect the return value.

Value

A logical value indicating success or failure by default.

If which = TRUE, a numeric value representing the column position will be returned.

is.OHLC, is.HL, and is.HLC return a single logical value, either TRUE or FALSE.

Author(s)

Jeffrey A. Ryan

See Also

quantmod.OHLC,OHLC.Transformations

Examples

Not run:
getSymbols("YHOO")

is.OHLC(YHOO)
has.OHLC(YHOO)

has.Ad(YHOO)

End(Not run)

internal-quantmod Internal quantmod Objects

Description

To be documented...

74 Lag

is.quantmod Test If Object of Type quantmod

Description

Test if object is of type quantmod or quantmodResults.

Usage

is.quantmod(x)
is.quantmodResults(x)

Arguments

x object to test

Value

Boolean TRUE or FALSE

Author(s)

Jeffrey A. Ryan

See Also

specifyModel, tradeModel

Lag Lag a Time Series

Description

Create a lagged series from data, with NA used to fill.

Usage

Lag(x, k = 1)

S3 method for class 'quantmod.OHLC'
Lag(x, k = 1)

S3 method for class 'zoo'
Lag(x, k = 1)

S3 method for class 'data.frame'

Lag 75

Lag(x, k = 1)

S3 method for class 'numeric'
Lag(x, k = 1)

Arguments

x vector or series to be lagged

k periods to lag.

Details

Shift series k-periods down, prepending NAs to front of series.

Specifically designed to handle quantmod.OHLC and zoo series within the quantmod workflow.

If no S3 method is found, a call to lag in base is made.

Value

The original x prepended with k NAs and missing the trailing k values.

The returned series maintains the number of obs. of the original.

Note

This function differs from lag by returning the original series modified, as opposed to simply
changing the time series properties. It differs from the like named Lag in the Hmisc as it deals
primarily with time-series like objects.

It is important to realize that if there is no applicable method for Lag, the value returned will be
from lag in base. That is, coerced to 'ts' if necessary, and subsequently shifted.

Author(s)

Jeffrey A. Ryan

See Also

lag

Examples

Stock.Close <- c(102.12,102.62,100.12,103.00,103.87,103.12,105.12)
Close.Dates <- as.Date(c(10660,10661,10662,10665,10666,10667,10668),origin="1970-01-01")
Stock.Close <- zoo(Stock.Close,Close.Dates)

Lag(Stock.Close) #lag by 1 period
Lag(Stock.Close,k=1) #same
Lag(Stock.Close,k=1:3) #lag 1,2 and 3 periods

76 modelData

modelData Extract Dataset Created by specifyModel

Description

Extract from a quantmod object the dataset created for use in modelling.

specifyModel creates a zoo object for use in subsequent workflow stages (buildModel,tradeModel)
that combines all model inputs, from a variety of sources, into one model frame.

modelData returns this object.

Usage

modelData(x, data.window = NULL, exclude.training = FALSE)

Arguments

x a quantmod object

data.window a character vector of subset start and end dates to return
exclude.training

remove training period

Details

When a model is created by specifyModel, it is attached to the returned object. One of the slots of
this S4 class is model.data.

Value

an object of class zoo containing all transformations to data specified in specifyModel.

Author(s)

Jeffrey A. Ryan

See Also

specifyModel,getModelData

Examples

Not run:
m <- specifyModel(Next(OpCl(SPY)) ~ Cl(SPY) + OpHi(SPY) + Lag(Cl(SPY)))
modelData(m)

End(Not run)

modelSignal 77

modelSignal Extract Model Signal Object

Description

Extract model signal object from quantmodResults object as an object of class zoo.

Usage

modelSignal(x)

Arguments

x object of class quantmodResults

Details

For use after a call to tradeModel to extract the generated signal of a given quantmod model.
Normally this would not need to be called by the end user unless he was manually post processing
the trade results.

Value

A zoo object indexed by signal dates.

Author(s)

Jeffrey A. Ryan

See Also

tradeModel

newTA Create A New TA Indicator For chartSeries

Description

Functions to assist in the creation of indicators or content to be drawn on plots produced by chart-
Series.

78 newTA

Usage

addTA(ta,
order = NULL,
on = NA,
legend = "auto",
yrange = NULL,
...)

newTA(FUN,
preFUN,
postFUN,
on = NA,
yrange = NULL,
legend.name,
fdots = TRUE,
cdots = TRUE,
data.at = 1,
...)

Arguments

ta data to be plotted

order which should the columns (if > 1) be plotted

legend what custom legend text should be added to the chart.

FUN Main filter function name - as a symbol

preFUN Pre-filter transformation or extraction function

postFUN Post-filter transformation or extraction function

on where to draw

yrange length 2 vector of y-axis range

legend.name optional legend heading, automatically derived otherwise

fdots should any . . . be included in the main filter call

cdots should any . . . be included in the resultant function object. fdots=TRUE will
override this to TRUE.

data.at which arguement to the main filter function is for data.

... any additonal graphical parameters/default to be included.

Details

Both addTA and newTA can be used to dynamically add custom content to a displayed chart.

addTA takes a series of values, either in a form coercible to xts or of the same length as the charted
series has rows, and displays the results in either a new TA sub-window, or over/underlayed on the
main price chart. If the object can be coerced to xts, the time values present must only be within
the original series time-range. Internally a merge of dates occurs and will allow for the plotting of
discontinuous series.

newTA 79

The order argument allows for multiple column data to be plotted in an order that makes the most
visual sense.

Specifying a legend will override the standard parsing of the addTA call to attempt a guess at a
suitable title for the sub-chart. Specifying this will cause the standard last value to not be printed.

The . . . arg to addTA is used to set graphical parameters interpretable by lines.

newTA acts as more of a skeleton function, taking functions as arguments, as well as charting pa-
rameters, and returns a function that can be called in the same manner as the built-in TA tools, such
as addRSI and addMACD. Essentially a dynamic code generator that allows for highly customizable
chart tools with minimal (possibly zero) coding. It is also possible to modify the resultant code to
further change behavior.

To create a new TA function with newTA certain arguments must be specified.

The FUN argument is a function symbol (or coercible to such) that is the primary filter to be used on
the core-data of a chartSeries chart. This can be like most of the functions within the TTR package
— e.g. RSI or EMA. The resultant object of the function call will be equal to calling the function on
the original data passed into the chartSeries function that created the chart. It should be coercible to
a matrix object, of one or more columns of output. By default all columns of output will be added to
the chart, unless suppressed by passing the appropriately positioned type='n' as the . . . arg. Note
that this will not suppress the labels added to the chart.

The preFUN argument will be called on the main chart’s data prior to passing it to FUN. This must
be a function symbol or a character string of the name function to be called.

The postFUN argument will be called on the resultant data returned from the FUN filter. This is
useful for extracting the relevant data from the returned filter data. Like preFUN it must be a function
symbol or a character string of the name of the function to be called.

The yrange argument is used to provide a custom scale to the y-axis. If NULL the min and max of
the data to be plotted will be used for the y-axis range.

The on is used to identify which subchart to add the graphic to. By default, on=NA will draw the
series in a new subchart below the last indicator. Setting this to either a positive or negative value
will allow for the series to be super-imposed on, or under, the (sub)chart specified, respectively. A
value of 1 refers to the main chart, and at present is the only location supported.

legend.name will change the main label for a new plot.

fdots and cdots enable inclusion or suppression of the . . . within the resulting TA code’s call to
FUN, or the argument list of the new TA function, respectively. In order to facilitate user-specified
graphical parameters it is usually desireable to not impose artificial limits on the end-user with
constraints on types of parameters available. By default the new TA function will include the dots
argument, and the internal FUN call will keep all arguments, including the dots. This may pose
issues if the internal function then passes those . . . arguments to a function that can’t handle them.

The final argument is data.at which is the position in the FUN argument list which expects the data
to be passed in at. This default to the sensible first position, though can be changed at the time of
creation by setting this argument to the required value.

While the above functions are usually sufficient to construct very pleasing graphical additions to
a chart, it may be necessary to modify by-hand the code produced. This can be accomplished by
dumping the function to a file, or using fix on it during an interactive session.

Another item of note, with respect to newTA is the naming of the main legend label. Following
addTA convention, the first ‘add’ is stripped from the function name, and the rest of the call’s name

80 newTA

is used as the label. This can be overridden by specifying legend.name in the construction of the
new TA call, or by passing legend into the new TA function. Subtle differences exist, with the
former being the preferred solution.

While both functions can be used to build new indicators without any understanding of the internal
chartSeries process, it may be beneficial in more complex cases to have a knowledge of the multi-
step process involved in creating a chart via chartSeries.

to be added...

Value

addTA will invisibly return an S4 object of class chobTA. If this function is called interactively, the
chobTA object will be evaluated and added to the current chart.

newTA will return a function object that can either be assigned or evaluated. Evaluating this function
will follow the logic of any standard addTA-style call, returning invisibly a chobTA object, or adding
to the chart.

Note

Both interfaces are meant to fascilitate custom chart additions. addTA is for adding any arbitrary
series to a chart, where-as newTA works with the underlying series with the main chart object. The
latter also acts as a dynamic TA skeleton generation tool to help develop reusable TA generation
code for use on any chart.

Author(s)

Jeffrey A. Ryan

See Also

chartSeries, TA, chob, chobTA

Examples

Not run:
getSymbols('SBUX')
barChart(SBUX)
addTA(EMA(Cl(SBUX)), on=1, col=6)
addTA(OpCl(SBUX), col=4, type='b', lwd=2)
create new EMA TA function
newEMA <- newTA(EMA, Cl, on=1, col=7)
newEMA()
newEMA(on=NA, col=5)

End(Not run)

Next 81

Next Advance a Time Series

Description

Create a new series with all values advanced forward one period. The value of period 1, becomes
the value at period 2, value at 2 becomes the original value at 3, etc. The opposite of Lag. NA is used
to fill.

Usage

Next(x, k = 1)

S3 method for class 'quantmod.OHLC'
Next(x,k=1)

S3 method for class 'zoo'
Next(x,k=1)

S3 method for class 'data.frame'
Next(x,k=1)

S3 method for class 'numeric'
Next(x,k=1)

Arguments

x vector or series to be advanced

k periods to advance

Details

Shift series k-periods up, appending NAs to end of series.

Specifically designed to handle quantmod.OHLC and zoo series within the quantmod workflow.

If no S3 method is found, a call to lag in base is made, with the indexing reversed to shift the time
series forward.

Value

The original x appended with k NAs and missing the leading k values.

The returned series maintains the number of obs. of the original.

Unlike Lag, only one value for k is allowed.

82 OHLC.Transformations

Note

This function’s purpose is to get the “next” value of the data you hope to forecast, e.g. a stock’s
closing value at t+1. Specifically to be used within the quantmod framework of specifyModel, as
a functional wrapper to the LHS of the model equation.

It is not magic - and thus will not get tomorrow’s values. . .

Author(s)

Jeffrey A. Ryan

See Also

specifyModel, Lag

Examples

Stock.Close <- c(102.12,102.62,100.12,103.00,103.87,103.12,105.12)
Close.Dates <- as.Date(c(10660,10661,10662,10665,10666,10667,10668),origin="1970-01-01")
Stock.Close <- zoo(Stock.Close,Close.Dates)

Next(Stock.Close) #one period ahead
Next(Stock.Close,k=1) #same

merge(Next(Stock.Close),Stock.Close)

Not run:
a simple way to build a model of next days
IBM close, given todays. Technically both
methods are equal, though the former is seen
as more intuitive...ymmv
specifyModel(Next(Cl(IBM)) ~ Cl(IBM))
specifyModel(Cl(IBM) ~ Lag(Cl(IBM)))

End(Not run)

OHLC.Transformations Extract and Transform OHLC Time-Series Columns

Description

Extract (transformed) data from a suitable OHLC object. Column names must contain the complete
description - either “Open”, “High”, “Low”, “Close”, “Volume”, or “Adjusted” - though may also
contain additional characters. This is the default for objects returned from most getSymbols calls.

In the case of functions consisting of combined Op, Hi, Lo, Cl (e.g. ClCl(x)) the one period
transformation will be applied.

For example, to return the Open to Close of a object it is possible to call OpCl(x). If multiple
periods are desired a call to the function Delt is necessary.

OHLC.Transformations 83

seriesLo and seriesHi will return the low and high, respectively, of a given series.

seriesAccel, seriesDecel, seriesIncr, and seriesDecr, return a vector of logicals indicating
if the series is accellerating, decellerating, increasing, or decreasing. This is managed by diff,
which provides NA fill and suitable re-indexing. These are here to make trade rules easier to read.

HL extracts the High and Low columns. HLC extracts the High, Low, and Close columns. OHLC
extracts the Open, High, Low, and Close columns.

These functions are merely to speed the model specification process. All columns may also be
extracted through standard R methods.

Assignment will not work at present.

getPrice will attempt to extract price column(s) from a time series, using sensible defaults. Addi-
tionally, the user may provide by symbol and price preference.

Usage

Op(x)
Hi(x)
Lo(x)
Cl(x)
Vo(x)
Ad(x)

seriesHi(x)
seriesLo(x)
seriesIncr(x, thresh=0, diff.=1L)
seriesDecr(x, thresh=0, diff.=1L)

OpCl(x)
ClCl(x)
ClOp(x)
HiCl(x)
LoCl(x)
LoHi(x)
OpHi(x)
OpLo(x)
OpOp(x)

HL(x)
HLC(x)
OHLC(x)
OHLCV(x)

getPrice(x, symbol=NULL, prefer=NULL, ...)

Arguments

x A data object with columns containing data to be extracted.

thresh noise threshold (seriesIncr/seriesDecr)

84 OHLC.Transformations

diff. differencing (seriesIncr/seriesDecr)

symbol text string containing the symbol to extract

prefer price type preference (see Details)

... not currently used

Details

Internally, the code uses grep to locate the appropriate columns. Therefore it is necessary to use
inputs with column names matching the requirements in the description section, though the exact
naming convention is not as important.

prefer can be used with getPrice to extract many commonly used financial time series prices
descriptions (e.g. open, high, low, close, bid, ask/offer, midpoint, trade, price). If the value of
prefer does not match one of the currently supported types, it will be matched against the object
column names using grep.

Value

Returns an object of the same class as the original series, with the appropriately column names
if applicable and/or possible. The only exceptions are for quantmod.OHLC objects which will be
returned as zoo objects, and calls to seriesLo and seriesHi which may return a numeric value
instead of the original object type.

Author(s)

Jeffrey A. Ryan

See Also

specifyModel

Examples

Not run:
getSymbols('IBM',src='yahoo')
Ad(IBM)
Cl(IBM)
ClCl(IBM)

seriesHi(IBM)
seriesHi(Lo(IBM))

removeSymbols('IBM')

End(Not run)

options.expiry 85

options.expiry Calculate Contract Expirations

Description

Return the index of the contract expiration date. The third Friday of the month for options, the last
third Friday of the quarter for futures.

Usage

options.expiry(x)
futures.expiry(x)

Arguments

x a time-indexed zoo object

Details

Designed to be used within a charting context via addExpiry, the values returned are based on the
description above. Exceptions, though rare, are not accounted for.

Value

A numeric vector of values to index on.

Note

There is currently no accounting for holidays that may interfere with the general rule. Additionally
all efforts have been focused on US equity and futures markets.

Author(s)

Jeffrey A. Ryan

References

~put references to the literature/web site here ~

See Also

addExpiry

86 periodReturn

Examples

Not run:
getSymbols("AAPL")

options.expiry(AAPL)
futures.expiry(AAPL)

AAPL[options.expiry(AAPL)]

End(Not run)

periodReturn Calculate Periodic Returns

Description

Given a set of prices, return periodic returns.

Usage

periodReturn(x,
period='monthly',
subset=NULL,
type='arithmetic',
leading=TRUE,
...)

dailyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

weeklyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

monthlyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

quarterlyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

annualReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

yearlyReturn(x, subset=NULL, type='arithmetic',
leading=TRUE, ...)

allReturns(x, subset=NULL, type='arithmetic',
leading=TRUE)

Arguments

x object of state prices, or an OHLC type object

period character string indicating time period. Valid entries are ‘daily’, ‘weekly’, ‘monthly’,
‘quarterly’, ‘yearly’. All are accessible from wrapper functions described below.
Defaults to monthly returns (same as monthlyReturn)

periodReturn 87

subset an xts/ISO8601 style subset string

type type of returns: arithmetic (discrete) or log (continuous)

leading should incomplete leading period returns be returned

... passed along to to.period

Details

periodReturn is the underlying function for wrappers:

• allReturns: calculate all available return periods

• dailyReturn: calculate daily returns

• weeklyReturn: calculate weekly returns

• monthlyReturn: calculate monthly returns

• quarterlyReturn: calculate quarterly returns

• annualReturn: calculate annual returns

Value

Returns object of the class that was originally passed in, with the possible exception of monthly and
quarterly return indicies being changed to class yearmon and yearqtr where available. This can be
overridden with the indexAt argument passed in the . . . to the to.period function.

By default, if subset is NULL, the full dataset will be used.

Note

Attempts are made to re-convert the resultant series to its original class, if supported by the xts
package. At present, objects inheriting from the ‘ts’ class are returned as xts objects. This is to
make the results more visually appealling and informative. All xts objects can be converted to class
ts with as.ts if that is desirable.

The first and final row of returned object will have the period return to last date, i.e. this week/month/quarter/year
return to date even if the start/end is not the start/end of the period. Leading period calculations can
be suppressed by setting leading=FALSE.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols

88 quantmod-class

Examples

Not run:
getSymbols('QQQ',src='yahoo')
allReturns(QQQ) # returns all periods

periodReturn(QQQ,period='yearly',subset='2003::') # returns years 2003 to present
periodReturn(QQQ,period='yearly',subset='2003') # returns year 2003

rm(QQQ)

End(Not run)

quantmod-class Class "quantmod"

Description

Objects of class quantmod help to manage the process of model building within the quantmod
package. Created automatically by a call to specifyModel they carry information to be used by a
variety of accessor functions and methods.

Objects from the Class

Objects can be created by calls of the form new("quantmod", ...).

Normally objects are created as a result of a call to specifyModel.

Slots

model.id: Object of class "character" ~~

model.spec: Object of class "formula" ~~

model.formula: Object of class "formula" ~~

model.target: Object of class "character" ~~

model.inputs: Object of class "character" ~~

build.inputs: Object of class "character" ~~

symbols: Object of class "character" ~~

product: Object of class "character" ~~

price.levels: Object of class "zoo" ~~

training.data: Object of class "Date" ~~

build.date: Object of class "Date" ~~

fitted.model: Object of class "ANY" ~~

model.data: Object of class "zoo" ~~

quantmod.version: Object of class "numeric" ~~

quantmod.OHLC 89

Methods

No methods defined with class "quantmod" in the signature.

Author(s)

Jeffrey A. Ryan

Examples

showClass("quantmod")

quantmod.OHLC Create Open High Low Close Object

Description

Coerce an object with the apporpriate columns to class quantmod.OHLC, which extends zoo.

Usage

as.quantmod.OHLC(x,
col.names = c("Open", "High",

"Low", "Close",
"Volume", "Adjusted"),

name = NULL, ...)

Arguments

x object of class zoo

col.names suffix for columns

name name to attach unique column suffixes to, defaults to the object name

... additional arguments (unused)

Details

quantmod.OHLC is actually just a renaming of an object of class zoo, with the convention of
NAME.Open, NAME.High, ... for the column names.

Additionally methods may be written to handle or check for the above conditions within other
functions - as is the case within the quantmod package.

Value

An object of class c(’quantmod.OHLC’,’zoo’)

Author(s)

Jeffrey A. Ryan

90 saveChart

See Also

OHLC.Transformations, getSymbols

saveChart Save Chart to External File

Description

Save selected chart to an external file.

Usage

saveChart(.type = "pdf", ..., dev = dev.cur())

Arguments

.type type of export. See Details.

... arguments to pass to device

dev which device should be exported

Details

This function wraps the base R function pdf, postscript, png, jpeg, and bitmap. The .type
argument must specify which device driver is desired.

The currently active device is used if dev is missing. The result is an exact copy (within the device
limits) of the chart specified.

The name of the resultant file is derived from the name of the chart, with the appropriate extension
appended. (from .type). Specifying the appropriate device file/filename will override this name.

The caller may specify any parameters that are valid for the device called. Internally, effort is made
to match the dimensions of the device being used to create the output file. User supplied dimensions
will override this internal calculation.

Value

A file in the current directory (default) matching the type of the output requested.

Note

As this uses do.call internally to create the new output device, any device that makes use of R
conventions should be acceptable as a value for .type

Author(s)

Jeffrey A. Ryan

setSymbolLookup 91

See Also

pdf png jpeg bitmap postscript

Examples

Not run:
getSymbols("AAPL")

chartSeries(AAPL)

require(TTR)
addBBands()

saveChart('pdf')
saveChart('pdf', width=13)

End(Not run)

setSymbolLookup Manage Symbol Lookup Table

Description

Create and manage Symbol defaults lookup table within R session for use in getSymbols calls.

Usage

setSymbolLookup(...)
getSymbolLookup(Symbols=NULL)

saveSymbolLookup(file,dir="")
loadSymbolLookup(file,dir="")

Arguments

... name=value pairs for symbol defaults

Symbols name of symbol(s)

file filename

dir directory of filename

Details

Use of these functions allows the user to specify a set of default parameters for each Symbol to be
loaded.

Different sources (e.g. yahoo, MySQL, csv), can be specified for each Symbol of interest. The
sources must be valid getSymbols methods - see getSymbols for details on which methods are
available, as well as how to add additional methods.

92 setSymbolLookup

The argument list to setSymbolLookup is simply the unquoted name of the Symbol matched to the
desired default source, or list of Symbol specific parameters.

For example, to signify that the stock data for Sun Microsystems (JAVA) should be downloaded
from Yahoo! Finance, one would call setSymbolLookup(JAVA='yahoo') or setSymbolLookup(JAVA=list(src='yahoo'))

It is also possible to specify additional, possibly source specific, lookup details on a per symbol
basis. These include an alternate naming convention (useful for sites like Yahoo! where certain
non-traded symbols are prepended with a caret, or more correctly a curcumflex accent. In that
case one would specify setSymbolLookup(DJI=list(name="^DJI",src="yahoo"))) as well as
passed parameters like dbname and password for database sources. See the specific getSymbols
function related to the source in question for more details of each implementation.

If a single named list is passed into the function without naming the list as a parameter, the names
of this list will be presumed to be symbol names to be added to the current list of symbols.

All changes are made to the current list, and will persist only until the end of the session. To always
use the same defaults it is necessary to call setSymbolLookup with the appropriate parameters
from a startup file (e.g. .Rprofile) or to use saveSymbolLookup and loadSymbolLookup to save
and restore lookup tables.

To unset a specific Symbol’s defaults, simply assign NULL to the Symbol.

Value

Called for its side effects, the function changes the options value for the specified Symbol through
a call to options(getSymbols.sources=...)

Note

Changes are NOT persistent across sessions, as the table is stored in the session options by default.

This may change to allow for an easier to manage process, as for now it is designed to minimize the
clutter created during a typical session.

Author(s)

Jeffrey A. Ryan

See Also

getSymbols, options,

Examples

setSymbolLookup(QQQ='yahoo',DIA='MySQL')
getSymbolLookup('QQQ')
getSymbolLookup(c('QQQ','DIA'))

Not run:
Will download QQQ from yahoo
and load DIA from MySQL
getSymbols(c('QQQ','DIA'))

setTA 93

End(Not run)

Use something like this to always retrieve
from the same source

.First <- function() {
require(quantmod,quietly=TRUE)
quantmod::setSymbolLookup(JAVA="MySQL")

}

OR

Not run:
saveSymbolLookup()
loadSymbolLookup()

End(Not run)

setTA Manage TA Argument Lists

Description

Used to manage the TA arguments used inside chartSeries calls.

Usage

setTA(type = c("chartSeries", "barChart", "candleChart"))

listTA(dev)

Arguments

type the function to apply defaults TAs to

dev the device to display TA arguments for

Details

setTA and unsetTA provide a simple way to reuse the same TA arguments for multiple charts. By
default all charting functions will be set to use the current chart’s defaults.

It is important to note that the current device will be used to extract the list of TA arguments to
apply. This is done with a call to listTA internally, and followed by calls to setDefaults of the
appropriate functions.

An additional way to set default TA arguments for subsequent charts is via setDefaults. See the
examples.

Value

Called for its side-effect of setting the default TA arguments to quantmod’s charting functions.

94 specifyModel

Note

Using setDefaults directly will require the vector of default TA calls to be wrapped in a call to
substitute to prevent unintended evaluations; OR a call to listTA to get the present TA argu-
ments. This last approach is what setTA wraps.

Author(s)

Jeffrey A. Ryan

See Also

chartSeries, addTA

Examples

Not run:
listTA()
setTA()

a longer way to accomplish the same
setDefaults(chartSeries,TA=listTA())
setDefaults(barCart,TA=listTA())
setDefaults(candleChart,TA=listTA())

setDefaults(chartSeries,TA=substitute(c(addVo(),addBBands())))

End(Not run)

specifyModel Specify Model Formula For quantmod Process

Description

Create a single reusable model specification for subsequent buildModel calls. An object of class
quantmod is created that can be then be reused with different modelling methods and parameters.
No data frame is specified, as data is retrieved from potentially multiple environments, and internal
calls to getSymbols.

Usage

specifyModel(formula, na.rm=TRUE)

Arguments

formula an object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specifcation are given
under Details.

na.rm remove all incomplete rows.

specifyModel 95

Details

Models are specified through the standard formula mechanism.

As financial models may include a variety of financial and economic indicators, each differing in
source, frequency, and/or class, a single mechanism to specify sources is included within a call to
specifyModel. See getModelData for details of how this process works.

Currently, objects of class quantmod.OHLC, zoo and ts are supported within the model formula.

All symbols are first retrieved from the global environment, without inheritence. If an object is
not found in the global environment, it is added to a list of objects to load through the getSymbols
function. getSymbols retrieves each object specified by using information as to its location specified
apriori via setDefaults or setSymbolLookup.

Internally all data is coerced to zoo,data.frame, or numeric classes.

Value

Returns an object of class quantmod. Use modelData to extract full data set as zoo object.

Note

It is possible to include any supported series in the formula by simply specifying the object’s sym-
bol. See *Details* for a list of currently supported classes.

Use getSymbols.skeleton to create additional methods of data sourcing, e.g. from a proprietary
data format or currently unimplemented source (Bloomberg, Oracle).

See getSymbols.MySQL and getSymbols.yahoo for examples of adding additional functionality

Author(s)

Jeffrey Ryan

References

quantmod.com http://www.quantmod.com

See Also

getModelData,getSymbols, buildModel,tradeModel,formula setSymbolLookup

Examples

Not run:
if QQQ is not in the Global environment, an attempt will be made
to retrieve it from the source specified with getSymbols.Default

specifyModel(Next(OpCl(QQQ)) ~ Lag(OpHi(QQQ),0:3) + Hi(DIA))

End(Not run)

http://www.quantmod.com

96 TA

TA Add Technical Indicator to Chart

Description

Functions to add technical indicators to a chart.

Details

The general mechanism to add technical analysis studies or overlays to a financial chart created
with chartSeries.

General TA charting tool functions:

• addTA: add data as custom indicator

• dropTA: remove technical indicator

• moveTA: move a technical indicator

• swapTA: swap two technical indicators

Current technical indicators include:

• addADX: add Welles Wilder’s Directional Movement Indicator

• addATR: add Average True Range

• addAroon: add Aroon Indicator

• addAroonOsc: add Aroon Oscillator

• addBBands: add Bollinger Bands

• addCCI: add Commodity Channel Index

• addCMF: add Chaiken Money Flow

• addChAD: add Chaiken Accumulation Distribution Line

• addChVol: add Chaiken Volatility

• addCMO: add Chande Momentum Oscillator

• addDEMA: add Double Exponential Moving Average

• addDPO: add Detrended Price Oscillator

• addEMA: add Exponential Moving Average

• addEMV: add Arm’s Ease of Movement

• addEnvelope: add Moving Average Envelope

• addEVWMA: add Exponential Volume Weighted Moving Average

• addExpiry: add options or futures expiration lines

• addKST: add Know Sure Thing

• addLines: add line(s)

• addMACD: add Moving Average Convergence Divergence

TA 97

• addMFI: add Money Flow Index

• addMomentum: add Momentum

• addOBV: add On-Balance Volume

• addPoints: add point(s)

• addROC: add Rate of Change

• addRSI: add Relative Strength Indicator

• addSAR: add Parabolic SAR

• addSMA: add Simple Moving Average

• addSMI: add Stochastic Momentum Index

• addTDI: add Trend Direction Index

• addTRIX: add Triple Smoothed Exponential Oscillator

• addVo: add Volume (if available)

• addVolatility: add volatility

• addWMA: add Weighted Moving Average

• addWPR: add Williams Percent R

• addZigZag: add Zig Zag

• addZLEMA: add ZLEMA

See the individual functions for specific implementation and argument details. Details of the under-
lying TTR implementations can be found in TTR.

The primary changes between the add*** version of an indicator and the TTR base function is the
absense of the data argument in the former.

Notable additions include on, with.col.

Value

Called for its side effects, an object to class chobTA will be returned invisibly. If called from the R
command line the method will draw the appropriate indicator on the current chart.

Note

Calling any of the above methods from within a function or script will generally require them to be
wrapped in a plot call as they rely on the context of the call to initiate the actual charting addition.

Author(s)

Jeffrey A. Ryan

References

Josh Ulrich - TTR package

98 tradeModel

tradeModel Simulate Trading of Fitted quantmod Object

Description

Simulated trading of fitted quantmod object. Given a fitted model, tradeModel calculates the signal
generated over a given historical period, then applies specified trade.rule to calculate and return a
tradeLog object. Additional methods can then be called to evaluate the performance of the model’s
strategy.

Usage

tradeModel(x,
signal.threshold = c(0, 0),
leverage = 1,
return.model = TRUE,
plot.model = FALSE,
trade.dates = NULL,
exclude.training = TRUE,
ret.type = c("weeks", "months", "quarters", "years"),
...)

Arguments

x a quantmod object from buildModel
signal.threshold

a numeric vector describing simple lower and upper thresholds before trade oc-
curs

leverage amount of leverage to apply - currently a constant
return.model should the full model be returned?
plot.model plot the model?
trade.dates specific trade interval - defaults to full dataset
exclude.training

exclude the period trained on?
ret.type a table of period returns
... additional parameters needed by the underlying modelling function, if any

Details

Still highly experimental and changing. The purpose is to apply a newly contructed model from
buildModel to a new dataset to investigate the model’s trading potential.

At present all parameters are very basic. The near term changes include allowing for a trade.rule
argument to allow for a dynamic trade rule given a set of signals. Additional the application of
variable leverage and costs will become part of the final structure.

Any suggestions as to inclusions or alterations are appreciated and should be directed to the main-
tainer of the package.

zoomChart 99

Value

A quantmodResults object

Author(s)

Jeffrey A. Ryan

See Also

specifyModel buildModel

Examples

Not run:
m <- specifyModel(Next(OpCl(QQQ)) ~ Lag(OpHi(QQQ)))
m.built <- buildModel(m,method='rpart',training.per=c('2007-01-01','2007-04-01'))

tradeModel(m.built)
tradeModel(m.built,leverage=2)

End(Not run)

zoomChart Change Zoom Level Of Current Chart

Description

Using xts style date subsetting, zoom into or out of the current chart.

Usage

zooom(n=1, eps=2)
zoomChart(subset, yrange=NULL)

Arguments

n the number of interactive view changes per call

eps the distance between clicks to be considered a valid subset request

subset a valid subset string

yrange override y-scale

100 zoomChart

Details

These function allow for viewing of specific areas of a chart produced by chartSeries by simply
specifying the dates of interest

zooom is an interactive chart version of zoomChart which utilizes the standard R device interaction
tool locator to estimate the subset desired. This estimate is then passed to zoomChart for actual
redrawing. At present it is quite experimental in its interface and arguments. Its usage entails a
call to zooom() followed by the selection of the leftmost and rightmost points desired in the newly
zoomed chart. This selection is accomplished by the user left-clicking each extreme point. Two
click are required to determine the level of zooming. Double clicking will reset the chart to the full
data range. The arguments and internal working of this function are likely to change dramatically
in future releases, though its use will likely remain.

Standard format for the subset argument is the same as the subsetting for xts objects, which is how
the data is stored internally for rendering.

Calling zoomChart with no arguments (NULL) resets the chart to the original data.

Examples include ’2007’ for all of the year 2007, ’2007::2008’ for years 2007 through 2008,
’::2007’ for all data from the beginning of the set to the end of 2007, ’2007::’ all data from the
beginning of 2007 through the end of the data. For specifics regarding the level of detail and inter-
nal interpretation please see [.xts

Value

This function is called for its side effect - notably changing the perspective of the current chart, and
changing its formal subset level. The underlying data attached to the chart is left unchanged.

Author(s)

Jeffrey A. Ryan

See Also

chartSeries

Examples

Not run:
data(sample_matrix)
chartSeries(sample_matrix)
zoomChart('2007-04::')
zoomChart()

zooom() # interactive example

End(Not run)

Index

∗ IO
getQuote, 47

∗ aplot
newTA, 77
saveChart, 90
TA, 96

∗ classes
chob-class, 28
chobTA-class, 29
quantmod-class, 88

∗ datagen
buildData, 19
Lag, 74
Next, 81

∗ datasets
getModelData, 44
getSymbols.oanda, 61

∗ data
getQuote, 47
getSymbols, 50
getSymbols.csv, 56
getSymbols.FRED, 57
getSymbols.MySQL, 59
getSymbols.rda, 63
getSymbols.yahoo, 68
getSymbols.yahooj, 70
modelData, 76
quantmod.OHLC, 89

∗ device
saveChart, 90

∗ dplot
chart_Series, 27
newTA, 77
saveChart, 90

∗ hplot
newTA, 77

∗ misc
adjustOHLC, 16
attachSymbols, 17

create.binding, 30
findPeaks, 35
Lag, 74
Next, 81

∗ models
buildModel, 21
fittedModel, 36
specifyModel, 94
tradeModel, 98

∗ package
quantmod-package, 3

∗ trading
Lag, 74

∗ ts
Lag, 74

∗ utilities
addADX, 4
addBBands, 5
addCCI, 6
addExpiry, 7
addMA, 8
addMACD, 9
addROC, 10
addRSI, 11
addSAR, 12
addSMI, 13
addVo, 14
addWPR, 15
chartSeries, 22
chartTheme, 25
Defaults, 31
Delt, 33
getDividends, 38
getFinancials, 39
getFX, 41
getMetals, 42
getOptionChain, 45
getOptionChain.orats, 46
getSplits, 49

101

102 INDEX

getSymbols.SQLite, 64
has.OHLC, 72
internal-quantmod, 73
is.quantmod, 74
modelData, 76
modelSignal, 77
OHLC.Transformations, 82
options.expiry, 85
periodReturn, 86
setSymbolLookup, 91
setTA, 93
zoomChart, 99

.chart.theme (chartTheme), 25

.chob (chartSeries), 22

.quantmodEnv (internal-quantmod), 73

Ad (OHLC.Transformations), 82
add_ADX (chart_Series), 27
add_axis (chart_Series), 27
add_BBands (chart_Series), 27
add_DEMA (addMA), 8
add_EMA (addMA), 8
add_EVWMA (addMA), 8
add_GMMA (addMA), 8
add_MACD (chart_Series), 27
add_RSI (chart_Series), 27
add_Series (chart_Series), 27
add_SMA (addMA), 8
add_SMI (chart_Series), 27
add_TA (chart_Series), 27
add_Vo (chart_Series), 27
add_VWAP (addMA), 8
add_WMA (addMA), 8
addADX, 4
addAroon (TA), 96
addAroonOsc (TA), 96
addATR (TA), 96
addBBands, 5
addCCI, 6
addChAD (TA), 96
addChVol (TA), 96
addCLV (TA), 96
addCMF (TA), 96
addCMO (TA), 96
addDEMA (addMA), 8
addDPO (TA), 96
addEMA (addMA), 8
addEMV (TA), 96
addEnvelope (TA), 96

addEVWMA (addMA), 8
addExpiry, 7, 85
addKST (TA), 96
addLines (TA), 96
addMA, 8
addMACD, 9
addMFI (TA), 96
addMomentum (TA), 96
addOBV (TA), 96
addPoints (TA), 96
addROC, 10
addRSI, 11
addSAR, 12
addShading (internal-quantmod), 73
addSMA (addMA), 8
addSMI, 13
addTA, 4–7, 9–15, 25, 30, 94
addTA (newTA), 77
addTDI (TA), 96
addTRIX (TA), 96
addVo, 14
addVolatility (TA), 96
addWMA (addMA), 8
addWPR, 15
addZigZag (TA), 96
addZLEMA (addMA), 8
adjustOHLC, 16
allReturns (periodReturn), 86
annualReturn (periodReturn), 86
anova.quantmod (fittedModel), 36
as.quantmod.OHLC (quantmod.OHLC), 89
attachSymbols, 17
axTicksByTime2 (chart_Series), 27
axTicksByValue (chart_Series), 27

barChart (chartSeries), 22
bitmap, 91
buildData, 19
buildModel, 21, 37, 44, 95, 99

candleChart (chartSeries), 22
chart_pars (chart_Series), 27
chart_Series, 27
chart_theme (chart_Series), 27
chartSeries, 22, 26, 29, 80, 94, 100
chartShading (internal-quantmod), 73
chartTA (newTA), 77
chartTheme, 25, 25
chob, 30, 80

INDEX 103

chob-class, 28
chobTA, 29, 80
chobTA-class, 29
Cl (OHLC.Transformations), 82
ClCl (OHLC.Transformations), 82
ClOp (OHLC.Transformations), 82
coef.quantmod (fittedModel), 36
coefficients.quantmod (fittedModel), 36
create.binding, 30
current.chob (chartSeries), 22

dailyReturn (periodReturn), 86
Defaults, 31
Delt, 33
dropTA (TA), 96

findPeaks, 35
findValleys (findPeaks), 35
fitted.quantmod (fittedModel), 36
fitted.values.quantmod (fittedModel), 36
fittedModel, 36
fittedModel<- (fittedModel), 36
fittedModel<-,quantmod-method

(quantmod-class), 88
fittedModel<--methods (quantmod-class),

88
flushSymbols (attachSymbols), 17
formula, 95
formula.quantmod (fittedModel), 36
futures.expiry (options.expiry), 85

getDefaults (Defaults), 31
getDividends, 17, 38, 50
getFin (getFinancials), 39
getFinancials, 39
getFX, 41, 53
getMetals, 42, 53
getModelData, 44, 53, 76, 95
getOptionChain, 45
getOptionChain.orats, 45, 46
getPrice (OHLC.Transformations), 82
getQuote, 47
getSplits, 17, 49
getSymbolLookup (setSymbolLookup), 91
getSymbols, 20, 25, 39, 42–44, 48, 50, 50, 54,

55, 57, 58, 61, 62, 64, 66, 67, 69, 71,
87, 90, 92, 95

getSymbols.Alphavantage
(getSymbols.av), 54

getSymbols.alphavantage
(getSymbols.av), 54

getSymbols.AlphVantage (getSymbols.av),
54

getSymbols.alphVantage (getSymbols.av),
54

getSymbols.av, 48, 54, 67
getSymbols.csv, 53, 56
getSymbols.FRED, 53, 57, 62
getSymbols.google, 53, 55
getSymbols.MySQL, 59
getSymbols.mysql (getSymbols.MySQL), 59
getSymbols.oanda, 42, 43, 53, 61
getSymbols.rda, 63
getSymbols.RData, 53
getSymbols.RData (getSymbols.rda), 63
getSymbols.SQLite, 64
getSymbols.tiingo, 66
getSymbols.yahoo, 17, 53, 55, 67, 68
getSymbols.yahooj, 70

has.Ad (has.OHLC), 72
has.Ask (has.OHLC), 72
has.Bid (has.OHLC), 72
has.Cl (has.OHLC), 72
has.Hi (has.OHLC), 72
has.HL (has.OHLC), 72
has.HLC (has.OHLC), 72
has.Lo (has.OHLC), 72
has.OHLC, 72
has.OHLCV (has.OHLC), 72
has.Op (has.OHLC), 72
has.Price (has.OHLC), 72
has.Qty (has.OHLC), 72
has.Trade (has.OHLC), 72
has.Vo (has.OHLC), 72
Hi (OHLC.Transformations), 82
HiCl (OHLC.Transformations), 82
HL (OHLC.Transformations), 82
HLC (OHLC.Transformations), 82

importDefaults (Defaults), 31
internal-quantmod, 73
is.BBO (has.OHLC), 72
is.HL (has.OHLC), 72
is.HLC (has.OHLC), 72
is.OHLC (has.OHLC), 72
is.OHLCV (has.OHLC), 72
is.quantmod, 74

104 INDEX

is.quantmodResults (is.quantmod), 74
is.TBBO (has.OHLC), 72

jpeg, 91

Lag, 74, 82
lag, 75
lineChart (chartSeries), 22
listTA (setTA), 93
Lo (OHLC.Transformations), 82
load, 64
loadSymbolLookup (setSymbolLookup), 91
loadSymbols (getSymbols), 50
LoCl (OHLC.Transformations), 82
logLik.quantmod (fittedModel), 36
LoHi (OHLC.Transformations), 82

matchChart (chartSeries), 22
modelData, 20, 44, 76
modelSignal, 77
monthlyReturn (periodReturn), 86
moveTA (TA), 96

new.replot (chart_Series), 27
newTA, 77
Next, 81

oanda.currencies (getSymbols.oanda), 61
OHLC (OHLC.Transformations), 82
OHLC.Transformations, 73, 82, 90
OHLCV (OHLC.Transformations), 82
Op (OHLC.Transformations), 82
OpCl, 34
OpCl (OHLC.Transformations), 82
OpHi (OHLC.Transformations), 82
OpLo (OHLC.Transformations), 82
OpOp, 34
OpOp (OHLC.Transformations), 82
options, 33, 92
options.expiry, 85

pdf, 91
peak (findPeaks), 35
periodReturn, 86
plot.quantmod (fittedModel), 36
png, 91
postscript, 91

quantmod, 37
quantmod (quantmod-package), 3

quantmod-class, 88
quantmod-package, 3
quantmod.OHLC, 73, 89
quantmodenv (quantmod-package), 3
quantmodResults-class (quantmod-class),

88
quantmodReturn-class (quantmod-class),

88
quarterlyReturn (periodReturn), 86

read.csv, 57
reChart (chartSeries), 22
removeSymbols (getSymbols), 50
resid.quantmod (fittedModel), 36
residuals.quantmod (fittedModel), 36

saveChart, 90
saveSymbolLookup (setSymbolLookup), 91
saveSymbols (getSymbols), 50
seriesAccel (OHLC.Transformations), 82
seriesDecel (OHLC.Transformations), 82
seriesDecr (OHLC.Transformations), 82
seriesHi (OHLC.Transformations), 82
seriesIncr (OHLC.Transformations), 82
seriesLo (OHLC.Transformations), 82
setDefaults (Defaults), 31
setSymbolLookup, 53, 57, 58, 61, 64, 69, 71,

91, 95
setTA, 25, 93
show,chobTA-method (chobTA-class), 29
show,quantmod-method (quantmod-class),

88
show,quantmodResults-method

(quantmod-class), 88
show,tradeLog-method (quantmod-class),

88
showSymbols (getSymbols), 50
specifyModel, 20–22, 44, 50, 53, 74, 76, 82,

84, 94, 99
standardQuote (getQuote), 47
summary,quantmod-method

(quantmod-class), 88
swapTA (TA), 96

TA, 80, 96
tradeLog-class (quantmod-class), 88
tradeModel, 22, 74, 77, 95, 98

unsetDefaults (Defaults), 31

INDEX 105

unsetTA (setTA), 93

valley (findPeaks), 35
vcov.quantmod (fittedModel), 36
viewFin (getFinancials), 39
viewFinancials (getFinancials), 39
Vo (OHLC.Transformations), 82

weeklyReturn (periodReturn), 86

yahooQF (getQuote), 47
yahooQuote.EOD (getQuote), 47
yearlyReturn (periodReturn), 86

zoom (zoomChart), 99
zoom_Chart (chart_Series), 27
zoomChart, 99
zooom (zoomChart), 99

	quantmod-package
	addADX
	addBBands
	addCCI
	addExpiry
	addMA
	addMACD
	addROC
	addRSI
	addSAR
	addSMI
	addVo
	addWPR
	adjustOHLC
	attachSymbols
	buildData
	buildModel
	chartSeries
	chartTheme
	chart_Series
	chob-class
	chobTA-class
	create.binding
	Defaults
	Delt
	findPeaks
	fittedModel
	getDividends
	getFinancials
	getFX
	getMetals
	getModelData
	getOptionChain
	getOptionChain.orats
	getQuote
	getSplits
	getSymbols
	getSymbols.av
	getSymbols.csv
	getSymbols.FRED
	getSymbols.MySQL
	getSymbols.oanda
	getSymbols.rda
	getSymbols.SQLite
	getSymbols.tiingo
	getSymbols.yahoo
	getSymbols.yahooj
	has.OHLC
	internal-quantmod
	is.quantmod
	Lag
	modelData
	modelSignal
	newTA
	Next
	OHLC.Transformations
	options.expiry
	periodReturn
	quantmod-class
	quantmod.OHLC
	saveChart
	setSymbolLookup
	setTA
	specifyModel
	TA
	tradeModel
	zoomChart
	Index

